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Neural Networks without Feature Learning

Random features = f(x) = & - 6(Wx)

[Balcan,Blum, Vempala '06, Rahimi-Recht "17...]

No training of the first layer: W is fixed

P P
P =Jfx)= ) do(w,x) = ), 4Dcx(x)

Computationally easy (linear regression)

Very popular setting among theoreticians

Equivalent to Neural Tangent Kernel/Lazy Regime/Kernel methods/ etc..
[Jacot, Gabriel, Hongler '18; Lee, Jaehoon, et al. 18; Chizat, Bach '19,...]



Recap of Sample Complexity

Theorem (Informal) [Mei, Misiakiewicz, Montanari *22]

In absence of feature learning (i.e. at Initialization) one can only learn a polynomial
approximation of f *of degree x with min(n, p) = O(d¥)

f*(x) = cst + Z uVhx + Z ,u(z)h*h* + Z ,ulﬁ)h*h*h*

ijk

Z (f*(x) — f(x))?

Random guess
Lazy/Kernel

Generalization Error

See also [El Karaoui '10; Mei-Montanari '19; Gerace '20; Jacot, Simsek, Spadaro, Hongler, Gabriel '20; Hu,
Lu, '20; Dhifallah, Lu '20; Loureiro, Gerbelot, Cui, Goldt '21; Montanari & Saeed '22; Xiao, Hu, Misiakiewicz,
Lu, Pennington '22; Dandi '23; Aguirre-Lopez, Franz, Pastore '24]
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*possibly excluding a few “special” polynomials.

See also [El Karaoui '10; Mei-Montanari '19; Gerace '20; Jacot, Simsek, Spadaro, Hongler, Gabriel '20; Hu,
Lu, '20; Dhifallah, Lu '20; Loureiro, Gerbelot, Cui, Goldt '21; Montanari & Saeed '22; Xiao, Hu, Misiakiewicz,
Lu, Pennington '22; Dandi '23; Aguirre-Lopez, Franz, Pastore '24]
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—_— W~ Z Wt 2,
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Advantage of Feature Learning

y =f*(x) = g*(x, = W*x)

With O(d) samples, GD/SGD on W recovers

Information/
| generative exponent |
<2

—_— W~ Z Wt 2,

Then the neural net is equivalent to
Y~ a-o(ZWE+2Z)x)=4a- 0(21§+ Z5)

Random feature in (finite)
reduced space

d— d" = r = 0(1)

Ben Arous et al. 2021, Abbe et al. 2022,2023, Damian et al. 2022, Dandi et al. 2023, 2024, etc.
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arbitrary depth?
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*: non-linearity |

fr(x) = g*(h™)




MIGHT (Multi-Index Gaussian Hierarchical Targets)

f100 = g* (hj(x), ... hi(x), x €

(%) = g*(h*) [

h* € RF

x, = Wx € R

X € |
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Key features of SIGHTS/MIGHTS

o SIGHT/MIGHT are simply three-layer neural networks.
« Dimension of features reduces from d to d© to O(1).
« By CLT, h* asymptotically Gaussian and independent.

 Motivated by Nichani et al. 2023:

[H(x) = gF(x' AX) e—)

i 1 level of dimension-
| reduction |







()

Learning SIGHT with Two-layer NNs




Lazy learning (Random Features/NTK)

Random guess
Lazy/Kernel

~ logn

Generalization Error
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Adaptive Learning with a two-layer net

R PR
- 15 Random guess
| — Lazy/Kernel
{.O
0
B €]
% <€1 2l I N
€
C . 1
q) 1 + 61 .
D ;
0 1 2 3 4

random feature/lazy learning but in reduced dimension R4
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Learning SIGHT with Three-layer NNs
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Conditions for learnability

IE(¢) = inf{k : |

-[(X)®"f*X)]H #0)

CIE(Y) = inf{k : ||

Requires non-trivial low-degree correlations |
| between intermediate features and labels |

Compositional ‘
' Information exponent |

Cal-101 Cal-256

(30/class) | (60/class)

SVM (1) |448+£0.7 |246+04

e ——————————————————a———————— SVM (2) |66.2+0.5 |39.6+0.3

; . | SVM (3) |72.3+£0.4 [46.0+0.3

I Matches behavior of | SVM (4)  |76.6 £0.4 [51.3 £0.1

| { SVM (5) |86.2+0.865.6+0.3
: ; SVM (7) |85.5+0.4(71.7+0.2

real data ! Softmax (5) |82.9 £ 0.4 |65.7 £ 0.5
e Softmax (7) |85.4 £ 0.4 |72.6 £ 0.1

Table 7. Analysis of the discriminative information con-
tained in each layer of feature maps within our ImageNet-
pretrained convnet. We train either a linear SVM or soft-
max on features from different layers (as indicated in brack-
ets) from the convnet. Higher layers generally produce
more discriminative features.

Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014
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Full set of conditions

Essential assumptions

» g™ information exponent 1.

e P;: information exponent/leap
<2

CIE(1) = IE(g*) X IE(P,)

e expressive o (hon-zero
Hermites) and regular.

Technical assumptions

* _ . .
- a = 1 Vi (symmetric targets)
* Correlation loss
* Re-initialization of layers

e expressive (hon-zero Hermites) and
regular.

e P,: information exponent # 1(to avoid
spikes)

» Elo(o(z))Hex(2)|E[P(z)Hex(z)] > 0,

-lo(0(z))z] =0,

. _ZN,/V(()J)[g*(Z)Hej(Z) =0, I <j <k]
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Main theorem

f(x) =WwW3'0 (WZG(WIX + b)) + bz)

W, € RP>X W, € RPP1, w, € RPs3

Let © > O be arbitrarily small

» First layer: O(log d) steps of spherical SGD on W, with correlation loss, batch-size
O(d'T¢*9), vanishing step-size:

W, =Z(W*) +o0,1),z; ~ U(S;)

 Second layer: upon reinitializing W, = ded, one step of pre-conditioned step with
batch-size O(d*¢*?), P = O(d*€T)

h;(x) = W,6(W;x) = ewih*(x) + 04(1)
» Third layer: Ridge regression on w with samples O(d?), Dy = O(d°):
fx) = £(x) + 04(1)
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» Conditional on perfect spherical recovery for W, _,, the same picture holds for
the last two layers.

 Key idea: Features are independent by tree-structure, asymptotically
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General Depth

» Conditional on perfect spherical recovery for W, _,, the same picture holds for
the last two layers.

 Key idea: Features are independent by tree-structure, asymptotically
Gaussian, and maintain nice tails (hypercontractivity).

Theorem 2. For L € N, let f*(x) denote a target as in Eq. (6) withr = 1, and let §', & be arbitrary reals satisfying 0 <
6 < &' < 1. Consider a model of the form fo(x) = w] o(Wr_10(Wh% _,(x))) withW € RPL—2X4""% hayingp; o =
O (dkee-2+8"Y rows independently sampled as w; ~ U(S =12 (1)). Under Ass. 1-3, after a single step of pre-conditioned

SGD on Wy, with batch-size ©(d**t-29), step-size ©(,/pr_1), the pre-activations hy,_1(x) == Wp_10(Wh} _,(x))
satisfy, for a constant ¢ > 0:

hr_1(x) =ewph}(x)+ 04(1), (22)




_1_.
10 1 -l d =064

=N NN
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K =log(n) / log(d)



Overlaps in parameter and function space

i
o 05 ;
a* P3(W*x
P} = anh( \/d:1:1/2 ) 0.79 ||Mwl|> i
0.6 - |
|
P3(£E) — HeQ(x) e Heg(x) 0.5~ I
0.4 - :
!
" -l—- Layerwise !
W]_W* .5 1 -l Joint I
MW = . M I
[ZA . | [Mh|2 i
v, _ Elb@)h @) ;
VE[h(z)?] 0.1- '
|
!

0.5 1.0 1.5 2.0
K= log(n) / log(d)
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Recovery by the first layer

' P, (W*x) ‘

g (hy(x)) ~ ph*(x) + pyHey(h*(x)) + . ..

h* =a*

e

WO 0 dw.

1

: x 1 + noise
U = dt

G dominated by initial

higher-order terms supressed by vanishing |
| specialization along w + vanishing step size. |
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Recovery by the second layer

h(x) = W,6(Wx) € R”2, X € R™

i Projections on the conjugate |
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Ah{,(x) & (6(Wx), AW;)

*Nichani et al. 2023
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Recovery by the second layer

h(x) = W,6(W;x) € R, X € R"™

i Projections on the conjugate |
Kernel* |

Conjugate Kernel Perturbed target
 Ahy(x) < Wio(Wx) o(W,XDE*(X) |

*Nichani et al. 2023
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Dimension reduction in action

Subspace of
degree—k u

polynomials
along W* \ N

K (X, X') after training W,

K (X, X') before training W,

= — (O(d®") steps for convergence

Conjugate Kernel ill-conditioned, 4, =

— O(d*") sample complexity.
Caveats:

|
Fix: Pre-conditioning: W, = W, — ;7(—0(WlXT)a(WlX)T)_1 VWZSZ
n




Spike+ bulk decomposition of Gram matrix



Spike+ bulk decomposition of Gram matrix




Spike+ bulk decomposition of Gram matrix
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P, (X
X, = W*x h* =a* - \F* cR
dé€
I T T I
K 21T 4 25K 2 HHX ) (X,) . 2 X OH(X,) o H (X )H, (X)) N
0 1 d 2 d2 k dk k+1 dk+1



Spike+ bulk decomposition of Gram matrix

X*: "V*X h* = a* . \F cR
de
X . x! H, (X )H(X,)! H.X)H.(X.)! H  (X)H, (X))
KzK§11T+K12 *d* +1<22 2 *)dzz( +) | ...+l<k2 a *)dkk( ) | Klg+1 k1 ;)HIIH( 2 +

n = 0( dk€+5)
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Spike+ bulk decomposition of Gram matrix

X = h* =a*- e R
* e
X Xe S HXOH(X)' L HX)HX,)"  , Hy (X)H(X,)" N
[ e oo k

~ 12117

Ny

Noise/ |dentity

d2

_ ke+o . . .
n=0d ) Concentrates to informative spikes

Generalization error of random features and kernel methods:
hypercontractivity and kernel matrix concentration

i dominant low-degree term along |

Song Mei* Theodor Misiakiewicz! ~Andrea Montanari'

Caveat: With Gaussian inputs, some radial degree k polynomials require less
than O(d") samples.
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Fitting the last layer

h(x) = W,6(Wx) ~ cw;h*(x)

e Reduction to Kernel on low-dimensional features.

o K(x1,X,) = Ey, . y0.1ylo(ewh™(xq) + b)a(cwh™(x,) + b)].

. W, =~ KRR(K( - ), X,y).

o Sample complexity/width now dimension-independent.






| Hierarchical functions with robu w.r.t intermediate features |
| allow exploitation of depth through dimension reduction |



[ Hierarchical functions with w.rt intermediate features |

Do we need narrowing of networks? No, consider:

a8 (Vi) P (W

m

— T

frx) =g*



| Hierarchical functions with w.r.t intermediate features |

Do we need narrowing of networks? No, consider:

a*1 P, (Wix)  aX Py (Wix)

m

e

Ny

“approximately independent” O(d) features in O(d?) space

. x € R4 m = O(d)

frx) =g*







