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Lecture outline

1. Applications of planting in disordered models

2. A survey on the overlap gap property



Part I: applications of planting in disordered

models
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Planted models

In this conference, we’ve seen many problems about recovering
planted signal from signal + noise:

‚ Planted clique: find a k-clique planted in G pN, 1{2q (Jerrum 92, Ma
Wu 13, Brennan Bresler 18+19+20, Lee Pernice Rajaraman Zadik 25)

‚ Tensor PCA: recover rank 1 spike planted in gaussian p-tensor
(Montanari Richard 14, Hopkins Shi Steurer 15, Wein Alaoui Moore 19,
Ben Arous Gheissari Jagannath 20, Ben Arous Gerbelot Piccolo 24)

‚ Single/multi-index models: recover W ˚ from yi “ f pW ˚x i , εq
(Damian Lee Soltanolkotabi 22, Damian Pillaud-Vivien Lee Bruna 24,
DLB 25, Troiani Dandi Defilippis Zdeborová Loureiro Krzakala 25)

This talk: planted models are also useful as a proof device for studying
“null” models without planted signal
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Outline of part I: applications of planting in disordered models

The classic planting trick: planting a Gibbs sample

Ground state large deviations in spherical spin glasses

TAP planting: capacity of the Ising perceptron
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Gibbs measures: prototypical examples

Sherrington–Kirkpatrick model: for σ P t˘1uN , W „ GOEpNq:

Hpσq “
1

2
pWσ,σq Gibbs measure: µβHpσq “

1

Z
eβHpσq

Random k-NAE-SAT: AND of not-all-equal clauses of size k, e.g.

Hpσq “ NAEpσ1, σ̄3, σ7q ^ NAEpσ2, σ̄3, σ̄5q ^ NAEpσ̄1, σ̄2, σ6q P tT, Fu

Model: sample M clauses, with each literal
IID
„ unifpσ1, σ̄1 . . . , σN , σ̄Nq.

Gibbs measure: µH “ unifpsat assignments of Hq

Applications:

‚ Spin glasses: deep connections to free energy
‚ Bayesian inference: model of posteriors; sampling applications
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Gibbs measures: (predicted) geometric phase transitions

α “ M{N
0 αuniq αsh αrsb αsat

(Image from Krzakala Montanari Ricci-Tersenghi Semerjian Zdeborová 06)

‚ α P p0, αuniqq: dynamics exhibit rapid mixing & Poincaré inequality

‚ α P pαuniq, αshq: rapid mixing from random but not worst-case start

‚ α P pαsh, αrsbq: µH shatters into eΩpNq clusters of mass e´ΩpNq

‚ α P pαrsb, αsatq: eΩpNq clusters but largest Op1q dominate the mass
(condensation / RSB)

‚ α P pαsat,8q: unsat, no solutions

Q: what does Gibbs measure µH look like around a typical σ „ µH?
Challenge: σ „ µH not very explicit and hard to work with.
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Planted model (constraint satisfaction setting)

Achlioptas Coja-Oghlan 08 had a beautiful idea. Consider joint
distributions of pH,σq:

Null model:
‚ H „ Lawprandom k-NAE-SATq
‚ σ „ unifpsat assignment of Hq

(hard)

Planted model:
‚ σ „ unifpt˘1uNq
‚ H „ Lawprandom k-NAE-SAT

| sat by σq

(easy)

In certain regimes, planted / null models contiguous:

PplantedpE q “ 1´ op1q ÐÑ PnullpE q “ 1´ op1q @ event E

­ If we want to prove a “whp” claim about the null model,
equivalent to prove it in the planted model. This is often easier!
(if contiguity holds)
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Relation between planted and null models

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂

H

σ P t˘1uN ˆ̂̂ indicates that σ satisfies H

Null model: random row H, then
random ˆ̂̂ in that row

Planted model: random col σ, then
random ˆ̂̂ in that col

(all cols symmetric, but rows aren’t)

Planted model weights H by Z pHq “ #psat assignments of Hq:

dPplanted

dPnull
pH,σq “

dPplanted

dPnull
pHq “

Z pHq

EZ pHq

If this is Θp1q whp, then planted / null models contiguous (Le Cam 60)

Holds for random k-NAE-SAT in RS regime M{N ă αrsb
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Classic planting 6/100

Application 1: shattering of random k-NAE-SAT

α “ M{N
0 αuniq αsh αrsb αsat

planted/null contiguous here
shattering expected here

„ 2k´1plog kq{k „ 2k´1 log 2

this result

Theorem (Achlioptas Coja-Oghlan 08)
At constraint density α P rp1` okp1qqαsh, p1´ okp1qqαrsbs,
whp over pk-NAE-SAT instance H,Gibbs sample σq:

#
!

sat assignments ρ of H with ∆
Ò

Hamming dist

pσ,ρq P rc1N, c2Ns
)

“ 0

σ

c1N

c2N

No sat assignments in ring
around σ ñ shattering
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Classic planting 7/100

Application 1: shattering of random k-NAE-SAT

Theorem (Achlioptas Coja-Oghlan 08)
At constraint density α P rp1` okp1qqαsh, p1´ okp1qqαrsbs,
whp over pk-NAE-SAT instance H,Gibbs sample σq:

#
!

sat assignments ρ of H with ∆pσ,ρq P rc1N, c2Ns
)

“ 0

Proof: by contiguity, suffices to prove for pH,σq „ planted model.

H „ Lawprandom k-NAE-SAT | sat by σq has explicit description:

clauses
IID
„ Lawpclause | sat by σq. Can calculate:

Eplanted#
!

sat assignments ρ of H with ∆pσ,ρq P rc1N, c2Ns
)

“
ÿ

ρ Pt˘1uN : ∆pσ,ρqPrc1N,c2Ns

Pplantedpρ satisfies Hq ! 1
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Classic planting 8/100

Application 2: symmetric Ising perceptron is frozen 1RSB

Symmetric Ising perceptron (Aubin Perkins Zdeborová 19):

intersection of discrete cube t˘1uN with IID symmetric slabs

Formally: for g 1, . . . , gM IID
„ N p0, INq, κ ą 0:

S “
!

σ P t˘1uN : |pg a,σq| ď κ
?
N for all 1 ď a ď M

)

Theorem (Perkins Xu 21)
Whp over G and σ „ unifpSq, σ has Hamming distance Ω(N) to all
other elements of S (frozen 1RSB).

Planted model: σ „ unifpt˘1uNq, then sample IID g 1, . . . , gM

conditional on |pg a,σq| ď κ
?
N.
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Classic planting 9/100

Application 3: shattering of pure spherical p-spin glass

Pure spherical p-spin model: for gi1,...,ip
IID
„ N p0, 1q,

Hpσq “
1

Npp´1q{2

N
ÿ

i1,...,ip“1

gi1,...,ipσi1 ¨ ¨ ¨σip

µβpdσq 9 eβHpσq dσ

on domain σ P SN “
?
NSN´1

Planted model: σ „ unifpSNq, then reweight probability density of H:

ρplpH | σq

ρnullpHq
9 eβHpσq

Equivalently: plant a spike

Hpρq “ Hnullpρq ` NβRpσ,ρqp Rpσ,ρq “
pσ,ρq

N
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Classic planting 10/100

Application 3: shattering of pure spherical p-spin glass

H

σ P SN Heatmap indicates value of eβHpσq

Null model: random row H, then
col σ with prob 9 eβHpσq

Planted model: random col σ, then
row H with prob 9 eβHpσq

(all cols symmetric, but rows aren’t)

Planted model weights H by partition function (Ø row sum)

ZβpHq “

ż

SN

eβHpσq dσ

That is, (similarly to before)

dPplanted

dPnull
pH,σq “

dPplanted

dPnull
pHq “

ZβpHq

EZβpHq

Planted/null contiguous if this is Θp1q whp. Holds for β ă βrsb.
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Application 3: shattering of pure spherical p-spin glass

β
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?

log p

this result

Theorem (El Alaoui Montanari Sellke 23)
For β P rβsh ¨ Op1q, βrsbq, whp over pH,Gibbs sample σq:
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Application 3: shattering of pure p-spin glasses

Theorem (El Alaoui Montanari Sellke 23)
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Proof: by contiguity, suffices to prove for pH,σq „ planted model:

σ „ unifpSNq Hpρq “ Hnullpρq ` NβRpσ,ρqp

This is an explicit spiked model.

σ

On each orthogonal band to σ,

tools are known to estimate
ş

eβHpρq

these show green region " red region

σ

c1c2
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Application 4: diffusion sampling from spin glasses

Main subroutine: mean (Ø score) estimation of following model

Generative process:
‚ H „ null model

‚ σ „ µ from µpσq 9 eHpσq

‚ y “ tσ `
?
tg , g „ N p0, INq

Planted generative process:
‚ σ „ unifpSNq

‚ H „ Lawpplanted model | σq
Ø Hpρq “ Hnullpρq ` NRpρ,σqp

‚ y “ tσ `
?
tg , g „ N p0, INq

Nature reveals pH, yq. Goal: estimate Erσ | H, y s.

Tractable in planted model: H, y are independent gaussian-channel
observations of σ

El Alaoui Montanari Sellke 22+23, H Montanari Pham 24 use this to
sample from Gibbs measure µpσq 9 eHpσq.
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Other applications of planting

‚ Coja-Oghlan Krzakala Perkins Zdeborová 16
‚ Coja-Oghlan Efthymiou Jaafari Kang

Kapetanopoulos 17
‚ Coja-Oghlan Kapetanopoulos Müller 18

RS free energy of CSPs

‚ H Sellke 23: 2nd moment proof of RS free energy in spherical spin
glasses

‚ Mossel Sly Sohn 24: sharp weak recovery threshold of sparse SBM
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Classic planting requires centeredness + RS

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂ ˆ̂̂ ˆ̂̂ ˆ̂̂

H

σ

Recall: planted model weights H

by partition function ZpHq

dPpl

dPnull
“

ZpHq

EZpHq
, contiguous if this Θp1q whp

This proof strategy requires contiguity. Models where this holds:

‚ random NAE-SAT or XOR-SAT, but not (immediately) SAT
‚ symmetric perceptron, but not asymmetric perceptron
‚ (mixed) p-spin glass, but only without external field

Also need free energy « annealed free energy: logZ “ logEZ `Op1q
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‚ random NAE-SAT or XOR-SAT, but not (immediately) SAT
‚ symmetric perceptron, but not asymmetric perceptron
‚ (mixed) p-spin glass, but only without external field

Also need free energy « annealed free energy: logZ “ logEZ `Op1q
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Outline of part I: applications of planting in disordered models

The classic planting trick: planting a Gibbs sample

Ground state large deviations in spherical spin glasses

TAP planting: capacity of the Ising perceptron



Ground state large deviations 17/100

How complicated is a random landscape?

Fyodorov 04, Auffinger Ben Arous Černý 13: study via # critical points,

using the Kac–Rice formula to calculate quantities like Er# crit ptss
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Landscape complexity

Huge amount of work studying wide range of models:

‚ Subag 17, Ben Arous Subag Zeitouni 20, Belius Černý Nakajima
Schmidt 22: spherical spin glasses

‚ Sagun Güney Ben Arous LeCun 14: neural networks

‚ Ben Arous Mei Montanari Nica 17: spiked tensor model

‚ Fyodorov 16, Ben Arous Fyodorov Khoruzhenko 21, Subag 23, Kivimae
24: non gradient vector fields

‚ Maillard Ben Arous Biroli 20: generalized linear models

‚ Fan Mei Montanari 21: TAP free energy in Z2-synchronization

‚ Ben Arous Bourgade McKenna 24: elastic manifold

‚ Kivimae 23, McKenna 24, H Sellke 25 : bipartite / multi-species
spherical spin glasses



Ground state large deviations 19/100

Ground state of pure spin glasses, via complexity

Auffinger Ben Arous Černý 13: crit pt complexity of pure p-spin model

Hpσq “
1

Npp´1q{2

N
ÿ

i1,...,ip“1

gi1,...,ipσi1 ¨ ¨ ¨σip , gi1,...,ip
IID
„ N p0, 1q

on SN “
?
NSN´1.

Calculate E|CrtpE q| ” E|tcrits with Hpσq{N ě Eu|:

1
N

log E|CrtpEq|

E
E0

Markov ñ whp no crit pts with energy ą E0. Implies ground state UB:

GSN ” max
σPSN

Hpσq

N
ď E0 whp

This is sharp! E0 matches ground state given by Parisi formula.



Ground state large deviations 19/100

Ground state of pure spin glasses, via complexity
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Auffinger Ben Arous Černý 13: crit pt complexity of pure p-spin model

Hpσq “
1

Npp´1q{2

N
ÿ

i1,...,ip“1

gi1,...,ipσi1 ¨ ¨ ¨σip , gi1,...,ip
IID
„ N p0, 1q

on SN “
?
NSN´1. Calculate E|CrtpE q| ” E|tcrits with Hpσq{N ě Eu|:

1
N

log E|CrtpEq|

E
E0

Markov ñ whp no crit pts with energy ą E0. Implies ground state UB:

GSN ” max
σPSN

Hpσq

N
ď E0 whp

This is sharp! E0 matches ground state given by Parisi formula.



Ground state large deviations 20/100

Related works on landscape complexity and ground state

‚ Subag 17: GSN ě E0 via 2nd moment analysis of |CrtpE q|.

Thus GSN
p
Ñ E0, locating ground state independently of Parisi formula

‚ Ben Arous Subag Zeitouni 20: similarly, GSN
p
Ñ E0 in some regime of

mixed p-spin models (+ results on Gibbs measure geometry)

‚ Subag Zeitouni 17: extremal process of crit pts in pure models

‚ Subag Zeitouni 21: asymptotics of |CrtpE q| at arbitrary E

‚ Belius Schmidt 22: asymptotics of # crit pts at given radial derivative

‚ Subag 17, Gheissari Jagannath 19, Ben Arous Jagannath 24: geometry
of Gibbs measures in pure models

‚ Auffinger Chen 14, McKenna 21, Kivimae 23: crit pt complexity and
ground state energy in pure spherical bipartite spin glasses
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Upper-tail large deviations of ground state

For E ą E0, what is the large deviation rate

ΦpE q “ lim
NÑ8

1

N
logPpGSpHq ě E q where GSpHq “ max

σPSN

Hpσq

N
?

Trivial upper bound:

PpGSpHq ě E q ď E|CrtpE q| ” E|tcrit pts with Hpσq{N ě Eu|

Implies upper bound on ΦpE q:

1
N

log E|CrtpEq| E

E0
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Q: Is this tight?

Theorem (Subag 17; Ben Arous Subag Zeitoni 20; H Sellke 23)
Yes. In fact, in all pure p-spin models,

PpGSpHq ě E q “ p1´ op1qqE|CrtpE q|

(H Sellke 23: also in a maximal regime of mixed p-spin models — later)
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Upper-tail large deviations of ground state

PpGSpHq ě E q “ E|tcrit pts σ with Hpσq{N ě E and Hpppσqqq “ maxpppHqqqu|

” E|ĂCrtpE q|

H

σ P SN

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂ : σ crit pt of H with Hpσq{N ě E

ˆ̂̂ : subset of ˆ̂̂ where also Hpσq “ maxpHq

E|CrtpE q| “ avg # ˆ̂̂ per row (including ˆ̂̂)

E|ĂCrtpE q| “ avg # ˆ̂̂ per row

PpGSpHq ě E q

E|CrtpE q|
“

E|ĂCrtpE q|

E|CrtpE q|
“ (fraction of green ˆ̂̂ in grid)

“ (fraction of green ˆ̂̂ in any column)

want to show: this is 1´ op1q



Ground state large deviations 22/100

Upper-tail large deviations of ground state

PpGSpHq ě E q “ E|tcrit pts σ with Hpσq{N ě E and Hpppσqqq “ maxpppHqqqu|

” E|ĂCrtpE q|

H

σ P SN

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂ : σ crit pt of H with Hpσq{N ě E

ˆ̂̂ : subset of ˆ̂̂ where also Hpσq “ maxpHq

E|CrtpE q| “ avg # ˆ̂̂ per row (including ˆ̂̂)

E|ĂCrtpE q| “ avg # ˆ̂̂ per row

PpGSpHq ě E q

E|CrtpE q|
“

E|ĂCrtpE q|

E|CrtpE q|
“ (fraction of green ˆ̂̂ in grid)

“ (fraction of green ˆ̂̂ in any column)

want to show: this is 1´ op1q



Ground state large deviations 22/100

Upper-tail large deviations of ground state

PpGSpHq ě E q “ E|tcrit pts σ with Hpσq{N ě E and Hpppσqqq “ maxpppHqqqu|

” E|ĂCrtpE q|

H

σ P SN

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂ : σ crit pt of H with Hpσq{N ě E

ˆ̂̂ : subset of ˆ̂̂ where also Hpσq “ maxpHq

E|CrtpE q| “ avg # ˆ̂̂ per row (including ˆ̂̂)

E|ĂCrtpE q| “ avg # ˆ̂̂ per row

PpGSpHq ě E q

E|CrtpE q|
“

E|ĂCrtpE q|

E|CrtpE q|
“ (fraction of green ˆ̂̂ in grid)

“ (fraction of green ˆ̂̂ in any column)

want to show: this is 1´ op1q



Ground state large deviations 22/100

Upper-tail large deviations of ground state

PpGSpHq ě E q “ E|tcrit pts σ with Hpσq{N ě E and Hpppσqqq “ maxpppHqqqu|

” E|ĂCrtpE q|

H

σ P SN

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂ : σ crit pt of H with Hpσq{N ě E

ˆ̂̂ : subset of ˆ̂̂ where also Hpσq “ maxpHq

E|CrtpE q| “ avg # ˆ̂̂ per row (including ˆ̂̂)

E|ĂCrtpE q| “ avg # ˆ̂̂ per row

PpGSpHq ě E q

E|CrtpE q|
“

E|ĂCrtpE q|

E|CrtpE q|
“ (fraction of green ˆ̂̂ in grid)

“ (fraction of green ˆ̂̂ in any column)

want to show: this is 1´ op1q



Ground state large deviations 22/100

Upper-tail large deviations of ground state

PpGSpHq ě E q “ E|tcrit pts σ with Hpσq{N ě E and Hpppσqqq “ maxpppHqqqu|

” E|ĂCrtpE q|

H

σ P SN

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂ : σ crit pt of H with Hpσq{N ě E

ˆ̂̂ : subset of ˆ̂̂ where also Hpσq “ maxpHq

E|CrtpE q| “ avg # ˆ̂̂ per row (including ˆ̂̂)

E|ĂCrtpE q| “ avg # ˆ̂̂ per row

PpGSpHq ě E q

E|CrtpE q|
“

E|ĂCrtpE q|

E|CrtpE q|
“ (fraction of green ˆ̂̂ in grid)

“ (fraction of green ˆ̂̂ in any column)

want to show: this is 1´ op1q



Ground state large deviations 22/100

Upper-tail large deviations of ground state

PpGSpHq ě E q “ E|tcrit pts σ with Hpσq{N ě E and Hpppσqqq “ maxpppHqqqu|

” E|ĂCrtpE q|

H

σ P SN

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂ : σ crit pt of H with Hpσq{N ě E

ˆ̂̂ : subset of ˆ̂̂ where also Hpσq “ maxpHq

E|CrtpE q| “ avg # ˆ̂̂ per row (including ˆ̂̂)

E|ĂCrtpE q| “ avg # ˆ̂̂ per row

PpGSpHq ě E q

E|CrtpE q|
“

E|ĂCrtpE q|

E|CrtpE q|
“ (fraction of green ˆ̂̂ in grid)

“ (fraction of green ˆ̂̂ in any column)

want to show: this is 1´ op1q



Ground state large deviations 22/100

Upper-tail large deviations of ground state

PpGSpHq ě E q “ E|tcrit pts σ with Hpσq{N ě E and Hpppσqqq “ maxpppHqqqu|

” E|ĂCrtpE q|

H

σ P SN

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂ : σ crit pt of H with Hpσq{N ě E

ˆ̂̂ : subset of ˆ̂̂ where also Hpσq “ maxpHq

E|CrtpE q| “ avg # ˆ̂̂ per row (including ˆ̂̂)

E|ĂCrtpE q| “ avg # ˆ̂̂ per row

PpGSpHq ě E q

E|CrtpE q|
“

E|ĂCrtpE q|

E|CrtpE q|
“ (fraction of green ˆ̂̂ in grid)

“ (fraction of green ˆ̂̂ in any column)

want to show: this is 1´ op1q



Ground state large deviations 23/100

Re-interpretation: critical point planted model
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ˆ̂̂ : subset of ˆ̂̂ where also Hpσq “ maxpHq

PpGSpHq ě E q

E|CrtpE q|
“ (fraction of green ˆ̂̂ in any col)

Critical point planted model:
‚ sample σ „ unifpSNq

‚ sample H conditional on ∇spHpσq “ 0,

Hpσq{N ě E

Ø sample random col, then random ˆ̂̂ in col

“ Pplantedpsampled ˆ̂̂ is greenq

“ PplantedpHpσq “ maxpHqq

Remains to show: PplantedpHpσq “ maxpHqq “ 1´ op1q
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ˆ̂̂ : subset of ˆ̂̂ where also Hpσq “ maxpHq

PpGSpHq ě E q

E|CrtpE q|
“ (fraction of green ˆ̂̂ in any col)

Critical point planted model:
‚ sample σ „ unifpSNq

‚ sample H conditional on ∇spHpσq “ 0,

Hpσq{N ě E

Ø sample random col, then random ˆ̂̂ in col

“ Pplantedpsampled ˆ̂̂ is greenq
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Planted large critical point is whp maximal

Recall critical point planted model:
‚ sample σ „ unifpSNq
‚ sample H conditional on ∇spHpσq “ 0 and Hpσq{N ě E

Remains to show: PplantedpHpσq “ maxpHqq “ 1´ op1q

Planted H is explicit spiked spherical spin glass

σ

On each orthogonal band, max of H bounded by Guerra’s interpolation
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Beyond pure models

Q: does PpGSpHq ě E q “ p1´ op1qqE|CrtpE q| in mixed p-spin model?

Hpσq “
ÿ

pě2

γp
Npp´1q{2

N
ÿ

i1,...,ip“1

gi1,...,ipσi1 ¨ ¨ ¨σip

A: yes, for all “zero-temperature 1RSB” models (and this is maximal)

As β Ñ8, Gibbs measure

µβpdσq 9 eβHpσq dσ

concentrates on orthogonal
spherical caps whp.

Equivalently: crit pts of H with
value « GSN are whp orthogonal.

(That is, they do not cluster)
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Complexity-based proof of ground state energy

Auffinger Ben Arous Černý 13 + Subag 17: in pure p-spin models,

complexity-based proof of GSN
p
Ñ E0. Independent of Parisi formula.

1
N

log E|CrtpEq|

E
E0

Ben Arous Subag Zeitouni 20: similarly GSN
p
Ñ E0 in some regime of

mixed p-spin models

Q: for which models can complexity considerations show GSN
p
Ñ E0?

Corollary (H Sellke 23)
In all zero-temperature 1RSB models (and this is maximal), GSN

p
Ñ E0

(uses Guerra interpolation, but avoids more difficult Parisi formula LB)
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Outline of part I: applications of planting in disordered models

The classic planting trick: planting a Gibbs sample

Ground state large deviations in spherical spin glasses

TAP planting: capacity of the Ising perceptron



TAP planting 27/100

The perceptron model

Intersection of discrete cube t˘1uN

with M i.i.d. random half-spaces

with M “ αN i.i.d. random half-spaces

α “ constraint density

Formally: for g 1, . . . , gM „ N p0, INq,

S “
!

x P t˘1uN : pg a, xq ě 0, @1 ď a ď M
)

Capacity problem: what is the critical α‹ where S goes from nonempty
to empty (with high probability as N Ñ8)?

Ø memorization capacity of a neural network (Gardner 87)
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Main result

Conjecture (Krauth Mézard 89)
For the Ising perceptron, α‹ “ αKM « 0.833.

Theorem (Ding Sun 18)
α‹ ě αKM, under condition that an explicit univariate function is ď 0.

Theorem (H 24)
α‹ ď αKM, under condition that an explicit bivariate function is ď 0.

(next slide)

Both results hold for more general model with margin κ P R:

S “
!

x P t˘1uN : pg a, xq ě κ
?
N, @1 ď a ď M

)

for analogous threshold αKMpκq, under further numerical conditions
depending on κ.
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The function in our numerical condition

S‹p1, 0q “ 0 local max, conjecturally unique global max

Plot of S‹ (domain R2 reparametrized to r´1, 1s2):
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Previous work

‚ Shcherbina Tirozzi 03, Stojnic 13: capacity of κ ě 0 spherical
perceptron (domain

?
NSN´1 instead of t˘1uN)

For Ising perceptron, κ “ 0:

‚ Talagrand 11, Xu 21, Nakajima Sun 23 sharp threshold sequence
α‹pNq (non-explicit, doesn’t imply α‹ “ limNÑ8α‹pNq exists)

‚ Simple bound: α‹ ď 1 (in a few slides)

‚ Kim Roche 98, Talagrand 99 & 00: 0.005 ď α‹ ď 0.9963

‚ Ding Sun 18: α‹ ě αKM « 0.833

‚ Altschuler Tikhomirov 24: α‹ ď 0.847

‚ H 24: α‹ ď αKM



TAP planting 30/100

Previous work

‚ Shcherbina Tirozzi 03, Stojnic 13: capacity of κ ě 0 spherical
perceptron (domain

?
NSN´1 instead of t˘1uN)

For Ising perceptron, κ “ 0:

‚ Talagrand 11, Xu 21, Nakajima Sun 23 sharp threshold sequence
α‹pNq (non-explicit, doesn’t imply α‹ “ limNÑ8α‹pNq exists)

‚ Simple bound: α‹ ď 1 (in a few slides)

‚ Kim Roche 98, Talagrand 99 & 00: 0.005 ď α‹ ď 0.9963

‚ Ding Sun 18: α‹ ě αKM « 0.833

‚ Altschuler Tikhomirov 24: α‹ ď 0.847

‚ H 24: α‹ ď αKM



TAP planting 30/100

Previous work

‚ Shcherbina Tirozzi 03, Stojnic 13: capacity of κ ě 0 spherical
perceptron (domain

?
NSN´1 instead of t˘1uN)

For Ising perceptron, κ “ 0:

‚ Talagrand 11, Xu 21, Nakajima Sun 23 sharp threshold sequence
α‹pNq (non-explicit, doesn’t imply α‹ “ limNÑ8α‹pNq exists)

‚ Simple bound: α‹ ď 1 (in a few slides)

‚ Kim Roche 98, Talagrand 99 & 00: 0.005 ď α‹ ď 0.9963

‚ Ding Sun 18: α‹ ě αKM « 0.833

‚ Altschuler Tikhomirov 24: α‹ ď 0.847

‚ H 24: α‹ ď αKM



TAP planting 30/100

Previous work

‚ Shcherbina Tirozzi 03, Stojnic 13: capacity of κ ě 0 spherical
perceptron (domain

?
NSN´1 instead of t˘1uN)

For Ising perceptron, κ “ 0:

‚ Talagrand 11, Xu 21, Nakajima Sun 23 sharp threshold sequence
α‹pNq (non-explicit, doesn’t imply α‹ “ limNÑ8α‹pNq exists)

‚ Simple bound: α‹ ď 1 (in a few slides)

‚ Kim Roche 98, Talagrand 99 & 00: 0.005 ď α‹ ď 0.9963

‚ Ding Sun 18: α‹ ě αKM « 0.833

‚ Altschuler Tikhomirov 24: α‹ ď 0.847

‚ H 24: α‹ ď αKM



TAP planting 30/100

Previous work

‚ Shcherbina Tirozzi 03, Stojnic 13: capacity of κ ě 0 spherical
perceptron (domain

?
NSN´1 instead of t˘1uN)

For Ising perceptron, κ “ 0:

‚ Talagrand 11, Xu 21, Nakajima Sun 23 sharp threshold sequence
α‹pNq (non-explicit, doesn’t imply α‹ “ limNÑ8α‹pNq exists)

‚ Simple bound: α‹ ď 1 (in a few slides)

‚ Kim Roche 98, Talagrand 99 & 00: 0.005 ď α‹ ď 0.9963

‚ Ding Sun 18: α‹ ě αKM « 0.833

‚ Altschuler Tikhomirov 24: α‹ ď 0.847

‚ H 24: α‹ ď αKM



TAP planting 31/100

Review: 1st/2nd moment method

‚ E|SpNαq| ! 1 ñ no solution at constraint density α (whp)

‚ Er|SpNαq|2s “ Op1q ¨ pE|SpNαq|q2 ñ D solution at density α
(with Ωp1q probability)

This provides a simple strategy to (try to) locate capacity:

‚ Let α1mt solve E|SpNα1mtq| “ 1. (So no solns whp for α ą α1mt)

α
α1mt

log E|SpNαq|

‚ (Hope to) show Er|SpNα1mtq|
2s — pE|SpNα1mtq|q

2 “ 1.
If so, α‹ “ α1mt.
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1st/2nd moment method: a success story

Symmetric Ising perceptron: constraints |pg a, xq| ď κ
?
N

(Aubin Perkins Zdeborová 19, Perkins Xu 21, Abbe Li Sly 22, . . . )

The moment method locates α‹ in this model!

Solution set: SpMq “ tx P t˘1uN : |pg a, xq| ď κ
?
N @1 ď a ď Mu

E|SpMq| “ 2N ¨ Ppa fixed x is in SpMqq

“ 2N ¨

M
ź

a“1

P
´

|pg a, xq| ď κ
?
N
¯

“ 2N ¨ Pp|N p0, 1q| ď κqM

Can similarly calculate Er|SpMq|2s, verify Er|SpMq|2s — pE|SpMq|q2.
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Can similarly calculate Er|SpMq|2s, verify Er|SpMq|2s — pE|SpMq|q2.



TAP planting 33/100

Direct moment method fails in asymmetric model

In our model, SpαNq “ tx P t˘1uN : pg a, xq ě 0 @1 ď a ď αNu

E|SpαNq| “ 2N ¨ 2´αN , so α1mt “ 1. This proves α‹ ď 1.

But. . . this doesn’t locate true threshold αKM « 0.833

Our approach: pass to a contiguous planted model in which
1st/2nd moment method locates capacity.
Next few slides motivate choice of planted model.
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What goes wrong? A large deviations perspective

α

1
αKM α1mt

« 0.833

log 2

1
N

log E|SpNαq|
“ p1´αq log 2

1
N

log |SpNαq|
“ Volpαq

E|SpNαq| dominated by events where the g a are atypically correlated

Typically: ga orthogonal Atypically: ga correlated,
which inflates # solutions



TAP planting 35/100

Remedy: conditional moment method

Key intuition of Ding Sun 18, Bolthausen 19: 1st mt failure caused by
large deviation events in barycenter of solution set S

barycenterbarycenter

That is, Ep|S |q " ptypical |S |q but we expect, for typical realization of
barycenter:

ptypical |S |q — Ep|S | | barycenterq

— Ep|S |2 | barycenterq1{2

Suggests plan: condition on barycenter, then 1st/2nd moment

Will implement by planting a certain heuristic proxy of barycenter
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Heuristic description of barycenter

TAP equation (Thouless Anderson Palmer 77): nonlinear system in

‚ G P RMˆN matrix with rows g 1, . . . , gM

‚ m P RN barycenter of S
‚ n P RM average slacks of constraints: na “ avgxPS

 

pg a, xq{
?
N
(

For explicit nonlinearities 9F , pF : RÑ R, constants b, d :

m “ 9F

ˆ

GJn
?
N
´ dm

˙

n “ pF

ˆ

Gm
?
N
´ bn

˙

Physics prediction: whp over G , this has a unique solution pm,nq
(which has the physical meaning above)
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TAP planting 37/100

Key idea: TAP planted model

Null model:

‚ G P RMˆN „ IID N p0, 1q entries
‚ pm,nq solution to TAPpG ; m,nq (hard)

Physics prediction: whp pm,nq exists & unique

TAP planted model:

‚ Sample pm,nq from its law (explicit prediction)
‚ Sample G conditioned on solving TAPpG ; m,nq

(easy)

Under physics prediction: planted ««« null!

Also: 1st/2nd mmt works in planted model

V existence/uniqueness of pm,nq is not proven.
We will need to justify that planted « null.

Physics prediction ñ
pm,nq “ “ ” f pG q

LawpGq

Lawpm, nq

f
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TAP planting 38/100

Proof roadmap

Null model:

G iid gaussian

Planted model:

G cond on

TAPpG ; m,nq

Conjecturally similar
under TAP heuristic

α‹ “ αKM in

planted model

1st/2nd moment
method

(direct calculation,
next slide)

Follows if TAP heuristic proven

α‹ “ αKM in

null model

(Main difficulty)

[Previous work: motivational role]

DS18: lower bd by
1st/2nd mmt on
truncation of |S|

Our work proves this. . .

. . .justifying this implication
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TAP planting 39/100

1st/2nd moment works in planted model

Recall planted model:
‚ Sample pm,nq from its law

‚ Sample G conditional on 9F´1pmq “ GJn?
N
´ dm, pF´1pnq “ Gm?

N
´ bn

This is linear constraint on G ñ conditional on pm,nq, G gaussian!

ñ conditional moments of |SpαNq| remain tractable. For typical pm,nq,

Er|SpαNq||m,ns « Er|SpαNq|2|m,ns1{2

« exppN Volpαqq

α
αKM

1
N

log |SpαNq|
“ Volpαq

ñ planted model has capacity αKM

(under our + DS18’s numerical conditions)
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‚ Sample G conditional on 9F´1pmq “ GJn?
N
´ dm, pF´1pnq “ Gm?

N
´ bn

This is linear constraint on G ñ conditional on pm,nq, G gaussian!
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Proof roadmap

Null model:

G iid gaussian

Planted model:

G cond on

TAPpG ; m,nq

Conjecturally similar
under TAP heuristic

α‹ “ αKM in

planted model

1st/2nd mmt method
(direct calculation,

numerical conditions
enter here)

Follows if TAP heuristic proven

α‹ “ αKM in

null model

DS18: lower bd by
1st/2nd mmt on
truncation of |S|

We now explain how to
make this step rigorous.
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TAP planting 41/100

Key issue: linking true and planted models

pm, nq

G

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂ ˆ̂̂

ˆ̂̂

ˆ̂̂ indicates pm,nq is TAP fixed point of G

Null model: random row

Planted model: random col, then random ˆ̂̂ in col

TAP prediction: most rows have exactly one ˆ̂̂

so null « planted

but. . . we don’t actually know this

ñ planted / null models can a priori be different
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Our work: contiguity of null / planted models

pm, nq

G

T “ t“typical” pm, nqu (suitably defined set; whp in planted model)
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We show, for G „ null model:

‚ Existence: G has TAP fixed pt pm,nq P T whp (most rows have a ˆ̂̂ in T )

‚ Uniqueness: Er#TAP fixed pts in T s “ 1` op1q (on average, 1` op1q ˆ̂̂’s

in T per row)

This shows null « planted. Formally,

PnullpE q ď Op1q ¨ sup
pm,nqPT

PplantedpE |m,nq ` op1q for all event E
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TAP planting 43/100

Existence: algorithmic proof

Goal: G „ null model has TAP fixed pt pm,nq P T whp

Approximate message passing (AMP) finds such a point:

mk`1 “ 9F

ˆ

GJnk

?
N

´ dmk

˙

nk “ pF

ˆ

Gmk

?
N
´ bnk´1

˙

Follows from existing tools to analyze AMP:

‚ AMP state evolution (Bayati Montanari 11, Bolthausen 14, . . . )

‚ Local concavity of TAP free energy near late AMP iterates
(Celentano Fan Mei 21, Celentano 22, Celentano Fan Lin Mei 23)
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TAP planting 44/100

Uniqueness: double-counting argument

Goal: for G „ null model, Er#TAP fixed pts of G in T s “ 1` op1q

­ This also has algorithmic proof! Following claim implies uniqueness:

Fix pm,nq P T “ ttypical ptsu. Sample G conditioned on TAPpG ; m,nq.

AMP run on G finds the planted point pm,nq whp

pm, nq P T

G

ˆ̂̂

ˆ̂̂

ˆ̂̂ ˆ̂̂ ˆ̂̂

ˆ̂̂

ˆ̂̂

ˆ̂̂ ˆ̂̂

ˆ̂̂

ˆ̂̂ : pm, nq TAP fixed pt of G
ˆ̂̂ : subset of ˆ̂̂ where AMPpGq finds pm, nq

ñ at most 1 ˆ̂̂ per row

Claim ñ in each col, fraction of green ˆ̂̂ “ 1´ op1q

ñ in whole grid, fraction of green ˆ̂̂ “ 1´ op1q

ñ on average, at most 1` op1q ˆ̂̂’s per row
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Uniqueness: AMP returns home in planted model

Remains to show: for pm,nq P T , G conditioned on TAPpG ,m,nq,

AMP run on G finds the planted point pm,nq whp

This can be proved by the same AMP state evolution +
local concavity of TAP free energy analyses.

Crucially: recall LawplantedpG | m,nq remains gaussian.
This provides enough structure to adapt these techniques.
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Recap: contiguity of null / planted models
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We show, for G „ null model:

‚ Existence: G has TAP fixed pt pm,nq P T whp (most rows have a ˆ̂̂ in T )

‚ Uniqueness: Er#TAP fixed pts in T s “ 1` op1q (on average, 1` op1q ˆ̂̂’s

in T per row)

This shows null « planted.
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Recap: proof roadmap

Null model:

G iid gaussian

Planted model:

G cond on

TAPpG ,m,nq

Conjecturally similar
under TAP heuristic

1st/2nd moment
method

α‹ “ αKM in

planted modelFollows if TAP heuristic proven

α‹ “ αKM in

null model

Our work proves this. . .

. . .justifying this implication



TAP planting 48/100

Other uses of TAP planting

“AMP returns home in planted model Ñ uniqueness” is general method,
enables passing to TAP planted model

Centered (and RS) Gibbs measures are simpler than non-centered ones:

measure µ has mean 0
(easy)

measure µ concentrates on band with random
center, which is a TAP fixed pt (hard)

TAP planting lets you condition on the random center, effectively
reducing to the mean-zero case. Usages in spin glass sampling:

‚ High-precision estimation of meanpµq (H Montanari Pham 24)
‚ Covariance bound }covpµq}op “ Op1q (H Mohanty Rajaraman Wu 24)
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‚ High-precision estimation of meanpµq (H Montanari Pham 24)
‚ Covariance bound }covpµq}op “ Op1q (H Mohanty Rajaraman Wu 24)
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Conclusion

Null model:
‚ H „ Lawpproblemq
‚ σ „ GibbspHq (hard)

Planted model:
‚ σ „ uniform
‚ H „ Lawpproblem |σq (easy)

Classic planting trick: if null / planted models are contiguous,
often easier to prove things about planted model.

Can also plant other objects, like critical points or TAP fixed points.
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Applications:

‚ shattering & RS free energy of
many models

‚ spin glass diffusion sampling

‚ ground state large deviation &
1RSB ground state energy

‚ capacity of Ising perceptron
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Outline of part II: a survey on the overlap gap property

Introduction and motivating problems

Overlap gap property: the basics

More OGPs and algorithm classes

Further enhancements

Hardness of finding strict local maxima

Strong low degree hardness



Introduction and motivating problems 50/100

Random optimization problems

How well can an efficient algorithm optimize a random objective?

Extensively studied models of disordered objectives:

‚ Constraint satisfaction: max cut / max independent set on G pN, pq,
random instances of (max)-k-SAT, . . .

‚ Mean-field spin glass: polynomial with IID gaussian coefs, e.g. cubic

Hpσq “
1

N

N
ÿ

i,j,k“1

gi,j,kσiσjσk , gi,j,k
IID
„ N p0, 1q

Maximize over domain SN “
?
NSN´1 (spherical) or ΣN “ t˘1uN (Ising)

Degree 2 on SN is eigenvalue problem, but deg ě 3 is highly nonconvex.

‚ Random perceptron: for IID g 1, . . . , gM „ N p0, INq, ϕ
Ò

activation

: RÑ R,

Hpσq “
M
ÿ

a“1

ϕ
´

pσ, g aq
?
N

¯
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Random optimization problems: motivation

‚ MLE in statistical tasks, e.g. tensor PCA: estimate x0 „ unifpSN´1q

from

T “ λxbp
0 ` G ppq, G ppq P pRNqbp has i.i.d. N p0, 1q entries

Max-likelihood estimator is random, non-convex optimization:

xMLE “ arg maxxPSN´1pT , xbpq.

Mean-field spin glass is null model λ “ 0.

‚ Model of neural network loss landscapes (Choromanska Henaff
Mathieu Ben Arous LeCun 15)

‚ Random perceptron Ø loss landscape of neural net on random data
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Random optimization problems: goals

Ground state: what is the max value of H that exists whp? (OPT)

Optimization: given random realization of H, algorithmically find σalg

with Hpσalgq as large as possible.

What value ALG can an efficient algorithm achieve? Does ALG “ OPT?

Challenges:

‚ Highly nonconvex landscape with eΩpNq

maxima — what are good algorithms?

‚ Average case setting — how to reason
about algorithmic hardness?

Sampling: algorithmically sample from Gibbs measure µβpσq9 eβHpσq.
For which β can an efficient algorithm succeed?
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Comparison with ferromagnetic Ising model

Ferromagnetic Ising: positive couplings on edges of a graph G

HFerpσq “
ÿ

pi,jqPEpGq

σiσj

Main tension between entropy and energy. For µβpσq “
1
Z e

βHFer
pσq

‚ β small ñ entropy wins, coordinates of σ „ µβ not aligned

‚ β large ñ energy wins, σ „ µβ aligns with ~̀1 or ~́1

In spin glasses, random gi,j yield frustration: can’t satisfy all couplings.
A priori unclear what ground state looks like.

`̀̀

`̀̀

`̀̀ ´́́

?
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Comparison with signal recovery

Many similar problems about detecting / recovering a planted signal:

‚ Planted clique: find a k-clique planted in G pN, 1{2q

‚ Tensor PCA: recover rank 1 spike planted in gaussian p-tensor

‚ Single/multi-index models: recover W ˚ from yi “ f pW ˚x i q

The models we focus on are “pure noise,” no planted signal

‚ Null models for signal recovery problems

‚ Progress can be made “in many directions”

‚ No notion of sample complexity / SNR
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Some possible phases for disordered systems

Predictions of geometric phase transitions + algorithmic implications:

β
0 βuniq βsh βrsb

‚ β P p0, βuniqq: dynamics exhibit rapid mixing & Poincaré inequality

‚ β P pβuniq, βshq: rapid mixing from random but not worst-case start

‚ β P pβsh, βrsbq: µβ shatters into eΩpNq clusters of mass e´ΩpNq

‚ β P pβrsb,8q: eΩpNq clusters but largest Op1q dominate the mass
(condensation / RSB)

Does solution geometry have rigorous implications for algorithms?
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This talk: overlap gap property

Gamarnik Sudan 14: solution landscape properties Ñ rigorous hardness
for stable algorithms in random optimization / search problems

‚ Stability: view alg A : H Ñ σ as function of problem instance H

‚ Motivated by “shattering Ñ hardness” intuition but formally
independent (Mézard Mora Zecchina 05, Achlioptas Coja-Oghlan 08,
Coja-Oghlan Efthymiou 10)

‚ In hindsight: algorithmic threshold for optimization given by a
geometric phase transition, but this threshold cannot be sharply
understood in terms of Gibbs measures

(Contrast: for sampling, shattering threshold βsh appears to be the
fundamental barrier; much recent progress)



Introduction and motivating problems 56/100

This talk: overlap gap property

Gamarnik Sudan 14: solution landscape properties Ñ rigorous hardness
for stable algorithms in random optimization / search problems

‚ Stability: view alg A : H Ñ σ as function of problem instance H

‚ Motivated by “shattering Ñ hardness” intuition but formally
independent (Mézard Mora Zecchina 05, Achlioptas Coja-Oghlan 08,
Coja-Oghlan Efthymiou 10)

‚ In hindsight: algorithmic threshold for optimization given by a
geometric phase transition, but this threshold cannot be sharply
understood in terms of Gibbs measures

(Contrast: for sampling, shattering threshold βsh appears to be the
fundamental barrier; much recent progress)



Introduction and motivating problems 56/100

This talk: overlap gap property

Gamarnik Sudan 14: solution landscape properties Ñ rigorous hardness
for stable algorithms in random optimization / search problems

‚ Stability: view alg A : H Ñ σ as function of problem instance H

‚ Motivated by “shattering Ñ hardness” intuition but formally
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Overlap gap property: the basics 57/100

Where it all started
Max independent set: find a large ind set of Erdős–Rényi G pN, d{Nq

(d large but fixed, N Ñ8)

‚ Largest ind set that exists: p2` odp1qq
log d
d N (Frieze 90)

‚ Best known algorithm finds: p1` odp1qq
log d
d N (trivial, greedy)

0 ALG “ log d
d

N OPT “ 2 log d
d

N

algorithms succeed no solutionsdo algorithms succeed here?

Hatami Lovász Szegedy 12 conjecture: local algorithms can
p1´ op1qq-approximate OPT

Local algorithm: generate Uv „ unifpr0, 1sq

at each v P G (shared randomness)

Uv

Ua

Ub Uc

At each v P G , decide output σv P t0, 1u based on

only data within R-neighborhood of v (R “ Op1q)

R
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Overlap gap property: the basics 58/100

Local algorithms do not reach OPT

Theorem (Gamarnik Sudan 14)
Any Op1q-local algorithm does not find an independent set of size
ě p1 `̀̀ 1?

2
` odp1qq

log d
d N in G pN, d{Nq, whp.

0 log d
d

N p1` 1?
2
q

log d
d

N 2 log d
d

N

algorithms succeed hard for local algs no solutions

Consider correlated family of G pN, d{Nq indexed by 0 ď t ď T “
`

N
2

˘

:

G 0 G 1 G 2 GT

ùñ
σt “ ApG tq

small steps
by stability

σ0

σT

Each G t resamples one edge of G t´1 (so G 0,GT independent)
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Overlap gap property: the basics 59/100

Local algorithms do not reach OPT

G 0 G 1 G 2 GT ùñ
σt “ ApG tq

small steps
by stability

σ0

σT

ąqogp
qogp

Suppose local A beats p1` 1?
2
` εq log d

d N ñ each σt solves G t

(i.e. is ind set of size ě p1` 1?
2
` εq log d

d N)

Landscape obstruction : for “medium” qogp, there do not exist σ,ρ

such that }σ ´ ρ} “ qogp and

σ solves G t1 and ρ solves G t2 for some t1, t2

Chaos property : G 0, GT don’t have solutions σ,ρ with dist ď qogp

Proof for both: calculate E#tsuch pσ,ρqu ! 1
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Overlap gap property: the basics 60/100

Questions

‚ Can we show a tighter bound?

0 log d
d

N p1` 1?
2
q

log d
d

N 2 log d
d

N

algorithms succeed hard for local algs no solutionswhat happens here?

‚ Problems beyond max independent set?

‚ Algorithm classes beyond local algorithms?

‚ Finer-grained runtime bounds?



Overlap gap property: the basics 61/100

Remarks

Instead of distance }σ ´ ρ}, equivalent to consider overlap pσ,ρq{N

“No solutions σ,ρ with medium overlap” is notion of clustering:

qogp
no solutions in red zone

σ

Key distinction: clustering of most vs all solutions

‚ Shattering, RSB, etc. concern when most solutions cluster/isolated.
Algorithms may succeed by finding atypical solutions
(Baldassi Ingrosso Lucibello Saglietti Zecchina 15, Abbe Li Sly 21)

‚ OGP: all solutions cluster (even across correlated instances), which
implies hardness rigorously
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Overlap gap property: the basics 62/100

Remarks

OGP uses geometry to rule out stable algorithms. We hope this is
indicative of hardness for all polynomial time algorithms.

Known exceptions:

‚ Random k-XOR-SAT exhibits OGP, but solved by gaussian elimination

‚ Lattice methods use algebraic structure (Zadik Song Wein Bruna 21)

‚ Shortest path exhibits OGP but easy (Li Schramm 24)



Outline of part II: a survey on the overlap gap property

Introduction and motivating problems

Overlap gap property: the basics

More OGPs and algorithm classes

Further enhancements

Hardness of finding strict local maxima

Strong low degree hardness



More OGPs and algorithm classes 63/100

Beyond the classic OGP

Many developments after the classic OGP, following same principle:

‚ If algorithm succeeds, it can build some constellation of solutions

‚ But we can show this constellation doesn’t exist

‚ Classic OGP: two points with distance q (Gamarnik Sudan 14)

‚ Star OGP: several points with pairwise distance q (Rahman Virág 17)

‚ Ladder OGP: σi has distance q to spanpσ1, . . . ,σi´1q (Wein 21)

‚ Branching OGP: densely branching tree (H Sellke 21)
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More OGPs and algorithm classes 64/100

Star OGP: tight hardness for max independent set

Theorem (Rahman Virág 17)
Any Op1q-local algorithm does not find an independent set of size
ě p1` odp1qq

log d
d N in G pN, d{Nq, whp.

0 log d
d

N p1` 1?
2
q

log d
d

N 2 log d
d

N

algorithms succeed hard by this result hard by GS14 no solutions

Construct m “ Op1q independent resample paths:

G

G1,1 G2,1 G3,1 G4,1

G1,2 G2,2 G3,2 G4,2

G1,T G2,T G3,T G4,T

ùñ
σi,t “ ApG i,tq

overlaps concentrate
and thus pairwise «equal

σ1,1 σ2,1

σ3,1σ4,1

σ1,2 σ2,2

σ3,2σ4,2

σ1,3 σ2,3

σ3,3σ4,3

σ1,4 σ2,4

σ3,4σ4,4

qogp

Landscape obstruction: there don’t exist m ind sets of size
ě p1` εq log d

d N (in possibly different G i,t) with pairwise overlap qogp
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More OGPs and algorithm classes 65/100

Stable vs concentrated algorithms

This argument uses strongly that overlaps pApG q,ApG 1qq concentrate

G1

G2G3

G4 σ1

σ2σ3

σ4

p f ppq
A
ùñ

overlaps concentrate
and thus pairwise «equal

‚ Stable alg: E}ApG q ´ApG 1q}2
2 À εN for p1´ εq-correlated G ,G 1

‚ Stable alg is concentrated if: pApG q,ApG 1qq concentrates for
q-correlated G ,G 1, @q P r0, 1s

stable algs

concentrated algs

‚ Concentration ñ control all
`

m
2

˘

overlaps among ApG 1q, . . . ,ApGmq

‚ Stability ñ can only use IVT considerations to control « m overlaps.
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More OGPs and algorithm classes 66/100

Stable vs concentrated algorithms

Stable algorithms:
E}ApG q ´ApG 1q}2

2 À εN for
p1´ εq-correlated G ,G 1

‚ Gradient descent, Langevin
dynamics for Op1q time

‚ AMP and general Op1q order
algorithms for Op1q time

‚ Op1q-local algorithms

‚ Low degree polynomials

‚ Low depth circuits

Concentrated algorithms:
pApG q,ApG 1qq concentrates for
q-correlated G ,G 1, @q P r0, 1s

‚ Gradient descent, Langevin
dynamics for Op1q time

‚ AMP and general Op1q order
algorithms for Op1q time

‚ Op1q-local algorithms

‚ Low degree polynomials

‚ Low depth circuits

Two classes of OGP hardness proofs: those where stability is enough,
and those that only work on concentrated algorithms
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More OGPs and algorithm classes 67/100

Comparison of OGPs for max independent set

Value
bound

OPT “ 2 log d
d

N

p1` 1?
2
q

log d
d

N

ALG “ log d
d

N

Concentrated algs only
(e.g. local, AMP)

Stable (Ě concentrated) algs
(e.g. degree Op1q polynomial)

Can we get optimal hardness in this problem for stable algorithms,
like low degree polynomials?
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More OGPs and algorithm classes 68/100

Low degree polynomials

Encode G P t0, 1up
N
2q by edge indicators.

Class of algs A : Rp
N
2q Ñ RN

ApG q “ pA1pG q, . . . ,ANpG qq .

where each Ai is a (possibly random) degree ď D polynomial.
Round to get output in t˘1uN . Deg Op1q polys include:

‚ Gradient descent, Langevin dynamics
‚ Approximate message passing, first-order iterations
‚ Message passing algorithms on factor graphs

for Op1q time

Low degree heuristic: deg ď D polynomials « e
rOpDq time algorithms in

many statistical problems (Hopkins 18, Kunisky Wein Bandeira 19, . . . )

(But see Buhai Hsieh Jain Kothari 25 for counterexample)
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More OGPs and algorithm classes 69/100

Ladder OGP: hardness for low degree polynomials

Theorem (Wein 21)
Any Op1q-deg polynomial does not find an independent set of size
ěp1` odp1qq

log d
d N in G pN, d{Nq.

(Later: we improve this to deg opNq)

G 0 G 1 G 2 G 3 G 4 G 5 GmT¨ ¨ ¨

Forbidden structure: m ind sets ρ1, . . . ,ρm of size ě p1` εq log d
d N

(to possibly different G t) where

1
N |ρ

tzpρ1 Y ¨ ¨ ¨ Y ρt´1q| P rqogp, qogp ` δs for all 2 ď t ď m

Suppose Op1q-deg A succeeds: σt “ ApG t
q is large ind set in G t , @t

σ0

ρ1qogp

σ1

σ2 σ3

ρ2

qogp

σ4
σ5

σ6

ρ3

This is the forbidden structure!
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More OGPs and algorithm classes 70/100

Comparison of OGPs for max independent set

Value
bound

OPT “ 2 log d
d

N

p1` 1?
2
q

log d
d

N

ALG “ log d
d

N

Concentrated algs only
(e.g. local, AMP)

Stable (Ě concentrated) algs
(e.g. degree Op1q polynomial)

What about other problems?



More OGPs and algorithm classes 71/100

Comparison of OGPs in general

Value
bound

OPT´ ε

ALG

Concentrated algs only
(e.g. local, AMP)

Stable (Ě concentrated) algs
(e.g. degree Op1q polynomial)

These don’t generally match ALG. Can we get optimal hardness?
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More OGPs and algorithm classes 72/100

Another model: mean-field spin glass

Polynomials with IID gaussian coefficients, e.g. random cubic

Hpσq “
1

N

N
ÿ

i,j,k“1

gi,j,k σiσjσk , gi,j,k
IID
„ N p0, 1q

More generally, linear combinations of different degrees.

Domain: SN “
?
NSN´1 (spherical) or ΣN “ t˘1uN (Ising).

Q: given H, algorithmically find σalg with Hpσalgq as large as possible.

0

OPT

no solutions

ALG

algorithms succeed

OPT´ ε

Op1q-deg polys hardis this also hard?

‚ OPT given by Parisi formula (Parisi 79, Talagrand 06, Panchenko 13)

‚ Algorithms reach explicit ALG (Subag 18, Alaoui Montanari Sellke 20)

‚ Classic OGP ñ hardness at OPT´ ε (Gamarnik Jagannath Wein 20)
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More OGPs and algorithm classes 73/100

Branching OGP: exact threshold

Theorem (H Sellke 21+23)
No concentrated (e.g. Lipschitz) algorithm beats ALG.

Lipschitz algorithm: A : RM Ñ RN where

}ApG q ´ApG 1q}2 ď Op1q ¨ }G ´ G 1}2

Includes grad desc, Langevin, AMP for Op1q time, but not low deg polys

Hierarchically correlated
problems

G11 G12 G21 G22

p1 p0

p0

p1

p2

A Lipschitz

σ11 σ12 σ21 σ22

Gaussian concentration
ñ overlaps concentrate

Correlation p0 Overlap q0 “ χpp0q

q0

Correlation p1 Overlap q1 “ χpp1q

q1

Branching tree

q2

Forbidden structure: branching tree of σi each with value ě ALG` ε
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No concentrated (e.g. Lipschitz) algorithm beats ALG.

Lipschitz algorithm: A : RM Ñ RN where

}ApG q ´ApG 1q}2 ď Op1q ¨ }G ´ G 1}2

Includes grad desc, Langevin, AMP for Op1q time, but not low deg polys

Hierarchically correlated
problems
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Geometric description of algorithmic threshold

(Lipschitz) algorithmic threshold is the supremal E whose super-level set

!

σ : Hpσq{N ě E
)

contains the leaves of a densely branching tree (with high probability)

‚ Achievability: efficient algorithms following approach of Subag 18,
Montanari 18, El Alaoui Montanari Sellke 20 can descend this tree.

‚ Hardness: any Lipschitz algorithm can be made to output such a tree.
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More OGPs and algorithm classes 75/100

Exact algorithmic thresholds in many problems

Branching OGP locates ALG for Lipschitz / online algorithms in:

‚ Optimizing mean-field spin glasses (Subag 18, Montanari 18, El Alaoui
Montanari Sellke 20, H Sellke 21)

‚ Multi-species spherical spin glasses (H Sellke 23)

‚ Random CSPs with average degree " 1 (Jones Marwaha Sandhu Shi
22, Chen Huang Marwaha 23)

‚ Random graph alignment (Du Gong Huang 25)

‚ Random systems of polynomial equations (Montanari Subag 24)

‚ Largest average submatrix / subtensor (Gamarnik Li 16, Bhamidi
Gamarnik Gong 25)

‚ Random perceptron (Montanari Zhou 24, H Sellke Sun 25`)
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Outline of part II: a survey on the overlap gap property

Introduction and motivating problems

Overlap gap property: the basics

More OGPs and algorithm classes

Further enhancements

Hardness of finding strict local maxima

Strong low degree hardness



Further enhancements 76/100

Further enhancements

OGP methodology:

1. If algorithm succeeds, it can build some constellation of solutions

2. But we can show this constellation doesn’t exist

So far: optimizations to step 2

‚ Make algorithm build more complex constellation

‚ Work harder to show this constellation doesn’t exist

Next few slides: enhancements to step 1. More clever ways to force
algorithm to build a simple constellation
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Further enhancements 77/100

Ramsey trick

Value
bound

OPT´ ε

ALG

Concentrated algs only
(e.g. local, AMP)

Stable (Ě concentrated) algs
(e.g. degree Op1q polynomial)

Q: if we know our problem satisfies a star OGP, can we show hardness
for stable but not concentrated algorithms?

Gamarnik Kızıldağ 21: yes, via Ramsey theoretic argument
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Further enhancements 78/100

Symmetric Ising perceptron

Average case setting of discrepancy minimization: for M{N “ α,

g 1, . . . , gN IID
„ N p0, IMq, find σ P t˘1uN such that

.
›

›

›

N
ÿ

i“1

σig i
›

›

›

8
ď κ

?
N pκ ! 1q

‚ Solutions exist up to α « 1
log2p1{κq

(Abbe Li Sly 21)

‚ Algorithm finds solution up to α — κ2 (Bansal Spencer 20)

Recall A : G “ pg 1, . . . , gNq Ñ σ stable if for p1´ εq-correlated G ,G 1,

E}ApG q ´ApG 1q}2
2 À εN

Theorem (Gamarnik Kızıldağ Perkins Xu 22)
Stable algorithms don’t beat αalg À κ2 log 1

κ .

(This is sharp, matching algorithm of H Sellke Sun 25`)
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Further enhancements 79/100

Symmetric Ising perceptron satisfies star OGP

Problem satisfies star OGP at α Á κ2 log 1
κ .

That is, for some m, qogp

‚ Sample any (possibly correlated) G 1, . . . ,GC where C “ Op1q

‚ Whp there don’t exist σ1, . . . ,σm P t˘1uN , each solving some G i , with

pσi ,σjq{N P rqogp, qogp ` δs , for all 1 ď i ă j ď m

σ1

σ2σ3

σ4

qogp

But . . . how to construct this structure with a stable algorithm?

All we know: for p1´ εq-correlated G ,G 1, }ApG q ´ApG 1q} small whp
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Further enhancements 80/100

Ramsey-theoretic construction of forbidden structure

Construct K independent resample paths (K ,T “ Op1q, K large)

G

G 1,1 G 2,1 G 3,1 ¨ ¨ ¨ GK,1

G 1,2 G 2,2 G 3,2 ¨ ¨ ¨ GK,2

G 1,T G 2,T G 3,T ¨ ¨ ¨ GK,T

ñ
1

2

3

¨ ¨
¨

K

2
T

19

25
26

8

Color edges of complete graph on rK s:
pi , jq colored by smallest t with }ApG i,t

q ´ApG j,t
q} P rqogp, qogp ` δs

Erdős Szekeres 35: if K ě TTm, exists monochromatic m-clique
These form the star configuration!
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Hardness for online algorithms

Q: can we show separation between online and general algorithms?

For M{N “ α, g 1, . . . , gN IID
„ N p0, IMq, find σ P t˘1uN such that

.
›

›

›

N
ÿ

i“1

σig i
›

›

›

8
ď κ

?
N pκ ! 1q

A : G “ pg 1, . . . , gNq Ñ σ online if σi depends only on pg 1, . . . , g i q

Algorithm of Bansal Spencer 20 achieving α — κ2 is online

Theorem (Gamarnik Kızıldağ Perkins Xu 23)
Online algorithms cannot beat αonline À κ2

0 plog 1
κ
q´1

no solutions

κ2

online algs succeed

κ2 log 1
κ

stable algs failonline algs succeed
stable algs succeed
but online algs fail
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Online OGP

Consider “online-correlated” problem instances pG 1, . . . ,Gm
q: identical

then independent

g all,1 g all,2 g all,3

g1,4

g2,4

g3,4

...

gm,4

g1,5

g2,5

g3,5

...

gm,5

g1,N

g2,N

g3,N

...

gm,N

Ð G1

Ð G2

Ð G3

Ð Gm

More structure in outputs: σt “ ApG t
q agree in entries where g i shared

ñ easier to show this doesn’t exist in solution landscape
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More OGPs and algorithm classes

Further enhancements

Hardness of finding strict local maxima

Strong low degree hardness



Hardness of finding strict local maxima 83/100

Can algorithms find strict local maxima?

Biroli 99, Müller Wyart 15, Parisi 17 prediction:

In glassy systems, low-temperature Glauber/Langevin dynamics
fail to find a stable (i.e. strongly concave) local max

Baity-Jesi Sagun Geiger Spigler Ben Arous Cammarota LeCun Wyart
Biroli 18:

during the training process [of a deep neural network] the dynamics
slows down because of an increasingly large number of flat directions

Behrens Arpino Kivva Zdeborová 22, Minzer Sah Sawhney 24 conjecture:
All efficient algorithms fail to find a stable local max
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Hardness of finding strict local maxima 84/100

Notion of strict local max: gapped states

SK model: Hamiltonian H : t˘1uN Ñ R defined by

Hpσq “
1

2
pWσ,σq , W „ GOEpNq .

σ P t˘1uN is a γ-gapped state of H if

Hpσq ´ Hpσ ‘ e i q ě γ @i P rNs .

Q: can an efficient algorithm find a gapped state?
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Hardness of finding gapped states

σ P t˘1uN is a γ-gapped state of H if

Hpσq ´ Hpσ ‘ e i q ě γ @i P rNs .

Theorem (Dandi Gamarnik Zdeborová 23, Minzer Sah Sawhney 24)
There exists an explicit γc ą 0 such that

lim
NÑ8

PpH has a γ-gapped stateq “

#

1 γ ă γc ,

0 γ ą γc .

If γ ă γc , there are ě ecpγqN γ-gapped states whp

Theorem (H Sellke 25)
For any (constant) γ ą 0 and degree opNq polynomial A,

PpApHq is a γ-gapped state of Hq “ op1q

Low degree heuristic ñ suggests failure of any eopNq time algorithm!
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Hardness of finding strict local maxima 86/100

Conditional OGP

Let H0,H1 be p1´ εq-correlated, i.e. pW 0
i,j ,W

1
i,jq have correlation 1´ ε

(ε small depending on gappedness parameter γ)

Lemma (Conditional OGP)
If σ0 is a γ-gapped state of H0 depending only on H0, then

PH1

´

D γ-gapped state σ1 of H1 with ∆pσ0,σ1q P rε3

Ò
!ε

N, cpγqNs
¯

ď e´cN

Contrast with earlier OGPs: there can exist γ-gapped states pσ0,σ1q of
pH0,H1q with ∆pσ0,σ1q P rε3N, cpγqNs.

­ But, given only H0, can’t predict which σ0 will be part of such pairs.
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Conditional OGP to hardness

Consider Markovian sequence of Hamiltonians:

H0 Ñ H1 Ñ H2 Ñ ¨ ¨ ¨ Ñ H1{ε2

pH i ,H i`1q is p1´ εq-correlated.

Suppose σi “ ApH i q is γ-gapped for H i .

σ0

ε3N
cpγqN

Conditional OGP ñ H1 has

no γ-gapped states in red zone

Stability of A ñ σ1 has

Hamming distance ď cpγqN to σ0

σ1

ε3N
cpγqN

σ2

ε3N
cpγqN

σ3

So H0,H1{ε2

have γ-gapped states σ0,σ1{ε2

with

∆pσ0,σ1{ε2

q ď 1
ε2 ¨ ε

3N “ εN .

Not possible because H0,H1{ε2

nearly independent!
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Hardness for Langevin dynamics on spherical models

Consider mixed p-spin glass

Hpσq “
ÿ

pě2

γp
Npp´1q{2

pG ppq,σbpq , G ppqi1,...,ip

IID
„ N p0, 1q

on spherical domain SN “
?
NSN´1.

Notion of strict local max: σ is a pγ, δq-stable well if

}∇spHpσq} ď δ
?
N , ∇2

spHpσq ĺ ´γI .

Theorem (H Sellke 25)
For any γ ą 0, there exists δ ą 0 such that

PpLow-temperature Langevin finds pγ, δq-stable well in Op1q timeq ď e´cN
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A closer look at the OGP methodology

Following does not occur simultaneously:

‚ Algorithm A solves all H1, . . . ,HT in the correlated ensemble

‚ Outputs σi “ ApH i q form the desired constellation

(prob 1´ e´cN)

‚ This constellation does not exist in solution space of pH1, . . . ,HT q

(prob 1´ e´cN)

What does this actually imply for psolve “ PpA solves H1q?

If A concentrates well (e.g. local or Lipschitz algorithm, like AMP):

‚ overlap pσi ,σjq concentrates @ pi , jq
‚ algorithm’s achieved value H i pσi q concentrates @ i

psolve ď e´cN

What if we just know A is stable? (e.g. low degree polynomial)
Union bound: psolve ď 1´ 1{T
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Strong low degree hardness 90/100

A closer look at the OGP methodology

This issue quietly plagued the OGP literature for years. Numerous works
prove psolve ď 1´ e´D for degree D polynomials:

‚ Mean-field spin glass optimization (Gamarnik Jagannath Wein 20)

‚ Max independent set on G pN, d{Nq (GJW 20, Wein 20)

‚ Number partitioning problem (Gamarnik Kızıldağ 21)

‚ Random k-SAT (Bresler H 21)

‚ Symmetric / negative Ising perceptron (Gamarnik Perkins Kızıldağ Xu
22, Li Schramm Zhou 24)

Open problem in Dec 2024 AIM workshop: Low degree polynomial
methods in average-case complexity
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Strong low degree hardness

We give general method to overcome this issue, for all stability-based
OGPs

Value
bound

OPT´ ε

ALG

Concentrated algs
(e.g. local, AMP)

Stable algs
(e.g. degree Op1q polynomial)

Actually, show psolve “ op1q for degrees much larger than Op1q.
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Strong low degree hardness

Theorem (H Sellke 25, informal)
If a stability-based OGP obstruction holds with probability 1´ pogp, then

Ppa degree D “ roplog 1
pogp
q algorithm succeedsq “ op1q

‚ Max ind set on G pN, d{Nq; random k-SAT; mean-field spin glasses:
pogp “ e´cN , D “ opNq
‚ Symmetric / negative Ising perceptron: pogp “ e´cN , D “ opN{ logNq

‚ Max-clique in G pN, 1{2q: pogp “ e´c log2 N , D “ oplog2 Nq

Low degree heuristic (Hopkins 18): degree D polys « eD time algs
Suggests e.g. eopNq time algorithms don’t beat ALG in max ind set

This is tight: D “ OpNq / time eOpNq can brute force!

(and in max-clique: D “ Oplog2 Nq / time eOplog2 Nq can brute force)
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Strong low degree hardness 93/100

Strong low degree hardness: proof ideas
Let’s revisit ladder OGP: consider Markovian sequence of Hamiltonians

H0 Ñ H1 Ñ ¨ ¨ ¨ Ñ HT

pH i ,H i`1q is p1´ εq-correlated.

Following doesn’t occur simultaneously:

‚ ApH i q solves H i for all i
‚ }ApH i q ´ApH i`1q} small for all i
‚ no forbidden structure in soln space of pH0, . . . ,HT q (prob 1´ pogpq

(e.g. 1´ e´cN)

­ lower bound Ppsolve allq and Ppall steps stableq by
positive correlation inequalities instead of union bound

Proof of concept: for Stabpi , i ` 1q “ t}ApH i q ´ApH i`1q} smallu

PpStabp0, 1q X Stabp1, 2qq “ ErPpStabp0, 1q X Stabp1, 2q|H1qs

(reversibility) “ ErPpStabp0, 1q|H1q2s

(Jensen) ě ErPpStabp0, 1q|H1qs2 “ PpStabp0, 1qq2
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Strong low degree hardness: initial attempt

We can iterate this dyadically!

PpStabp0, . . . ,T qq “ ErPpStabp0, . . . , T2 q X StabpT2 , . . . ,T q|H
T
2 qs

(reversibility) “ ErPpStabp0, . . . , T2 q|H
T
2 q2s

(Jensen) ě ErPpStabp0, . . . , T2 q|H
T
2 qs2 “ PpStabp0, . . . , T2 qq

2

(iterate) ě PpStabp0, 1qqT ” pTstable

‚ Same proof: PpA solve all H0, . . . ,HT q ě PpA solve H0qT ” pTsolve

‚ Ppall steps stableq ě pTstable

‚ PpE forbidden structureq “ 1´ pogp (e.g. 1´ e´cN)

don’t occur simultaneously ñ pTsolve ` pTstable ď 1` pogp

Doesn’t yet imply psolve “ op1q
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Strong low degree hardness via dyadic Jensen

­ do dyadic Jensen on merged event Solve&Stabp0, . . . ,T q:

!

A solves H0, . . .HT and }ApH i q ´ApH i`1q} small for 0 ď i ď T ´ 1
)

PpSolve&Stabp0, . . . ,T qq ě PpSolve&Stabp0, . . . , T2 qq
2

ě PpSolve&Stabp0, 1qqT

Since PpE forbidden structureq “ 1´ e´cN & don’t occur simultaneously:

PpSolve&Stabp0, 1qq ď e´cN{T is small

Set suitable parameters ñ psolve “ op1q for degree D “ opNq polynomial

(more generally, D “ oplog 1
pogp
q if PpE forbidden structureq “ 1´ pogp)



Strong low degree hardness 95/100

Strong low degree hardness via dyadic Jensen

­ do dyadic Jensen on merged event Solve&Stabp0, . . . ,T q:

!

A solves H0, . . .HT and }ApH i q ´ApH i`1q} small for 0 ď i ď T ´ 1
)

PpSolve&Stabp0, . . . ,T qq ě PpSolve&Stabp0, . . . , T2 qq
2

ě PpSolve&Stabp0, 1qqT

Since PpE forbidden structureq “ 1´ e´cN & don’t occur simultaneously:

PpSolve&Stabp0, 1qq ď e´cN{T is small

Set suitable parameters ñ psolve “ op1q for degree D “ opNq polynomial

(more generally, D “ oplog 1
pogp
q if PpE forbidden structureq “ 1´ pogp)



Strong low degree hardness 95/100

Strong low degree hardness via dyadic Jensen

­ do dyadic Jensen on merged event Solve&Stabp0, . . . ,T q:

!

A solves H0, . . .HT and }ApH i q ´ApH i`1q} small for 0 ď i ď T ´ 1
)

PpSolve&Stabp0, . . . ,T qq ě PpSolve&Stabp0, . . . , T2 qq
2

ě PpSolve&Stabp0, 1qqT

Since PpE forbidden structureq “ 1´ e´cN & don’t occur simultaneously:

PpSolve&Stabp0, 1qq ď e´cN{T is small

Set suitable parameters ñ psolve “ op1q for degree D “ opNq polynomial

(more generally, D “ oplog 1
pogp
q if PpE forbidden structureq “ 1´ pogp)



Strong low degree hardness 95/100

Strong low degree hardness via dyadic Jensen

­ do dyadic Jensen on merged event Solve&Stabp0, . . . ,T q:

!

A solves H0, . . .HT and }ApH i q ´ApH i`1q} small for 0 ď i ď T ´ 1
)

PpSolve&Stabp0, . . . ,T qq ě PpSolve&Stabp0, . . . , T2 qq
2

ě PpSolve&Stabp0, 1qqT

Since PpE forbidden structureq “ 1´ e´cN & don’t occur simultaneously:

PpSolve&Stabp0, 1qq ď e´cN{T is small

Set suitable parameters ñ psolve “ op1q for degree D “ opNq polynomial

(more generally, D “ oplog 1
pogp
q if PpE forbidden structureq “ 1´ pogp)



Strong low degree hardness 95/100

Strong low degree hardness via dyadic Jensen

­ do dyadic Jensen on merged event Solve&Stabp0, . . . ,T q:

!

A solves H0, . . .HT and }ApH i q ´ApH i`1q} small for 0 ď i ď T ´ 1
)

PpSolve&Stabp0, . . . ,T qq ě PpSolve&Stabp0, . . . , T2 qq
2

ě PpSolve&Stabp0, 1qqT

Since PpE forbidden structureq “ 1´ e´cN & don’t occur simultaneously:

PpSolve&Stabp0, 1qq ď e´cN{T is small

Set suitable parameters ñ psolve “ op1q for degree D “ opNq polynomial

(more generally, D “ oplog 1
pogp
q if PpE forbidden structureq “ 1´ pogp)



Strong low degree hardness 96/100

Strong low degree hardness from star OGP

Theorem (H Sellke 25)
If a star OGP holds with probability 1´ pogp, then

P
´

a degree D “ oplog 1
pogp
{ log log 1

pogp
q algorithm succeeds

¯

“ op1q

Construct K " 1 independent resample paths

G

G1,1 G2,1 G3,1 ¨ ¨ ¨ GK,1

G1,2 G2,2 G3,2 ¨ ¨ ¨ GK,2

G1,T G2,T G3,T ¨ ¨ ¨ GK,T

Solve&Stabpkq “ ton k-th arm,
A solves all & all steps stableu

As before: PpSolve&Stabpkqq

ě PpSolve&Stabpone stepqqT

Suppose psolve “ Ωp1q. For K large, can show:

P pSolve&Stabpkq holds for ě pTmqT arms q “ Ωp1q

But on this event, Ramsey trick constructs OGP structure! Contradiction.
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Strong low degree hardness 97/100

SLDH for number partitioning problem

NPP: given g1, . . . , gN
IID
„ N p0, 1q, find σ P t˘1uN minimizing

discrpσq “
ˇ

ˇ

ˇ

N
ÿ

i“1

giσi

ˇ

ˇ

ˇ

‚ Best σ that exists: Θp
?
N2´Nq (Karmarkar Karp Lueker Odlyzko 86)

‚ Best known algorithm finds: 2´Θplog2 Nq (Karmarkar Karp 83)

‚ Stable algorithms cannot reach 2´ΘpNq (Gamarnik Kızıldağ 21)

‚ Algorithms cannot beat 2´Θplog3 Nq, assuming worst case hardness of
approx shortest vector in lattices (Vafa Vaikuntanathan 25)

Theorem (Mallarapu Sellke 25)
For any 1 ! D ! N, Ppa degree D alg beats 2´

rΩpDqq “ op1q.

This is sharp for all 1 ! D ! N: deg D achieves 2´
rΩpDq by brute force.
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‚ Best known algorithm finds: 2´Θplog2 Nq (Karmarkar Karp 83)

‚ Stable algorithms cannot reach 2´ΘpNq (Gamarnik Kızıldağ 21)

‚ Algorithms cannot beat 2´Θplog3 Nq, assuming worst case hardness of
approx shortest vector in lattices (Vafa Vaikuntanathan 25)

Theorem (Mallarapu Sellke 25)
For any 1 ! D ! N, Ppa degree D alg beats 2´

rΩpDqq “ op1q.

This is sharp for all 1 ! D ! N: deg D achieves 2´
rΩpDq by brute force.
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Relation to shortest path OGP

Li Schramm 24: shortest path on G pN, C log N
N q satisfies OGP but is easy

ñ When does OGP actually imply hardness?

H Sellke 25: OGP with prob 1´ pogp ñ hard for deg D ! log 1
pogp

(and D — log 1
pogp

can brute force in many problems)

Our perspective: probability of OGP could matter

‚ shortest path OGP holds with pogp —
log log N

log N ñ D — log logN

‚ heuristically corresponds to runtime eD ! polypNq

Possible reconciliation: pogp “ N´ωp1q necessary for “genuine” hardness
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Strong low degree hardness 99/100

Phase diagram for sampling
For sampling from spin glass Gibbs measure µβpσq 9 eβHpσq:

0

β

βsh

Gibbs measure shatters; sampling predicted hard.
Rigorous hardness for stable samplers.

(Crisanti Horner Sommers 93, El Alaoui Montanari Sellke 23,

Gamarnik Jagannath Kızıldağ 23, El Alaoui 24)

Prediction: Langevin succeeds from random init

Langevin mixes rapidly from worst-case init
(Bauerschmidt Bodineau 17, Gheissari Jagannath 19, Eldan

Koehler Zeitouni 22, Anari Jain Pham Koehler Vuong 24, AKV 24)

βuniq

Langevin mixes slowly from worst-case init
(Ben Arous Jagannath 24)

βSL

Algorithmic stochastic localization (Ø diffusion) succeeds
(El Alaoui Montanari Sellke 22+23, H Montanari Pham 24)

Simulated annealing succeeds
(H Mohanty Rajaraman Wu 24)

Open problem: sample for β P pβSL, βshq
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Strong low degree hardness 100/100

Conclusion
OGP is a powerful geometric framework for computational limits in
random search / optimization problems.

Value
bound

OPT´ ε

ALG

Concentrated algs
(local, AMP)

Stable algs
(degree Op1q poly)

(degree Op1q poly)

(degree ropNq poly)

Outstanding challenges:

‚ strong low degree hardness
for branching OGP

‚ long-time analysis of
Glauber / Langevin dynamics

‚ hardness of finding isolated
solutions

‚ quantum systems (see
Anschuetz Gamarnik Kiani 24)

‚ hardness at ALG (even for
conc algs) in random CSPs

‚ sample up to βsh

Thank you!
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