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Part I: Calibration



Calibration: The Quest for Confidence

Calibration of a classifier:

Probabilistic predictions should match true empirical probabilities.

E.g., if a model says P(class = 1) = 0.8 to 100 samples, about 80 should be positive.

Predicted probability

Empirical frequency Model curve
Perfect calibration
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Why is calibration important?

Reliable decision-making in high-stakes problems → trustworthy algorithms

MRIT2

R

Brain MRI Scan

Alg: 80% confidence

“malignant”

Does this mean 8 out of 10

such cases are truly

malignant?

90%

Autonomous Vehicle

Alg: 90% confidence

pedestrian detected

Does this imply 9 out of 10

such detections are accurate?

$ ×

Credit Applicant

Alg: 95% probability

of default

Would 19 out of 20 such

applicants default in real life?

Calibrated machine learning algorithms ensure this is true!
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Defining Calibration

A model is well-calibrated if:

Among all instances where the model predicts a probability of p, the true fraction of

positives is exactly p.

Formally: Let f̂ denote a trained model in a supervised learning binary classification

problem with i.i.d. training samples {yi , xi}i=1,...,n; f̂ is well-calibrated if

P[ynew = 1 | f̂ (xnew) = p] = p, ∀p ∈ [0, 1]
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Reformulating in single-index models: this talk

Data Generating Process: Assume

yi ∼ Bern
(
σ
(
w⊤

⋆ xi
))

, xi ∼ F

where w⋆ is an unknown deterministic vector

Calibration Error: For any predictor f̂ , define for xnew ∼ F , independent of x′i s

∆cal
p (f̂ ) = p − E

[
σ
(
w⊤

⋆ xnew
) ∣∣∣ f̂ (xnew) = p

]

A predictor is well–calibrated if ∆cal
p (f̂ ) = 0 for all p.
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Old Roots in Statistics and Meteorology

• Original roots in weather forecasting and statistics

6



The Problem: Modern Models are Often Miscalibrated

Modern neural networks are notoriously overconfident. [Guo et al., 2017]

Empirical frequency vs predicted probability: Old neural networks (LeNet-left, 5-layers) are

well-calibrated, whereas modern deep networks (ResNet, right-110 layers) are overconfident.

Their predicted probabilities grossly overestimate empirical frequencies although the prediction

error is lower by 15%.
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Overparametrization hurts

calibration: why?



Insights from a simple model: logistic regression

For high-dimensional logistic regression, where dim./sample size→ γ > 0, the MLE

(the ERM solution with logistic loss), in suitable high-dimensional sense, satisfies (S.

and Candès, PNAS ’19)

ŵ ∼ α⋆w⋆ + σ⋆Z,

Crucial: α⋆ > 1, σ⋆ > σclassical as soon as γ > 0, grows larger as γ increases.

See also: Barbier et al. PNAS ’19
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Over-confident estimates...

The multiplicative bias α⋆ > 1→ ERM is over-confident: coefficient estimates seriously biased

upward!
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Translate to over-confident predictions

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

x

P(
y
=

1
|x

)

True function
Fitted curve

The true sigmoid transitions smoothly from class 0 to 1, but the fitted curve is overly steep:

predicts hard 0’s and 1’s with unnecessarily high confidence
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Consequences for calibration

• The calibration error ∆cal
p (f̂ ) grows as feature to sample size ratio increases.

• The error is positive even for small values of feature dim./sample size ratio.

• Calibration error analyses in Bai et al. ’21, Clarté et al. ’22.

11



The fix?



Post-hoc calibration

Typical approach: train a model, then calibrate its outputs on a held-out set.

Platt Scaling [Platt, 1999]

• Fits a logistic regression model on the

original model’s scores.

• Learns two parameters: a scaling

factor and a shift.

• Simple and often effective, but

assumes a sigmoid shape for the

miscalibration.

Many Other Approaches

• Histogram Binning [Zadronsky &

Elkan, 2001]

• Isotonic Regression [Zadronsky &

Elkan, 2002]
...

• Expectation Consistency Calibration

[Clarte et al. 2023]
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The Gap: Where Theory Meets Practice

Despite empirical success, substantial gaps persist.

• Do these methods provably work in overparametrized problems? We often

rely on empirical validation. Prior theory (Kumar et al. ’2019, Gupta et al. ’2020,

Jung et al. ’2021, Sun et al’ ’2024) does not capture the precise impact of

dimensionality on the performance of calibration methods; An exception: Clarte et

al. ’2023

• Do calibration and prediction face inherent trade-offs? Can a method

simultaneously achieve low calibration and prediction errors, especially under

overparametrization?

• Is there a “best” calibrated predictor? Are there calibration methods that

perform provably better than others in specific contexts?

Our work bridges this gap for an important class of models.
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Our Contribution: Angular

Calibration



Setting: High-Dimensional Linear Classification

• Data Model: Feature vectors xi ∈ Rd are Gaussian, xi ∼ N (0,Σ).

• True Labels: Follow a single-index model with true signal w⋆ ∈ Rd :

yi ∼ Bernoulli(σ(⟨w⋆, x⟩))

where σ is a link function (e.g., logistic). W.l.o.g. w⊤
⋆ Σw⋆ = 1

• Estimator: Obtain ŵ using regularized logistic regression (convex loss and

penalty) :

ŵ = argmin
w

n∑
i=1

ℓyi (w
⊤x) +

n∑
i=1

g(wi )

• Raw Predictor: The initial, uncalibrated probability of success for a new xtest is

S(xtest) = σ(⟨ŵ, xtest⟩)
• High-dimensional asymptotic regime: Assume n, d →∞, d/n→ γ ∈ (0,∞)
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The Core Idea: What’s Wrong with the Raw Predictor?

The raw predictor σ(⟨ŵ, x⟩) uses ŵ as a proxy for w⋆. But ŵ is just an estimate! In

fact, an inconsistent one, in the sense that ∥ŵ−w⋆ ∥ = O(1).

w∗

ŵ

x

⟨w∗, x⟩

⟨ŵ , x⟩

θ

The core of miscalibration lies in the discrepancy between ŵ and w⋆, captured by the

angle ∠(ŵ,w⋆)

15
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Angular calibration

We identify a well-calibrated predictor, called angular calibration, that adjusts

prediction logits using the angle between the estimator and the true signal

θ∗ = arccos
(

⟨w⋆,ŵ⟩Σ
∥ŵ∥Σ∥w⋆∥Σ

)
Define

f̂ang
(
ŵ⊤xnew; θ⋆

)
= EZ∼N(0,1)

[
σ

(
cos(θ⋆)

ŵ⊤xnew
∥ŵ∥Σ

+ sin(θ⋆)Z

)]
,

The logit is an interpolation between the informative component ŵ⊤xnew and the

noninformative Gaussian noise Z .

16



Angular predictor

With θ̂ a consistent estimator of θ⋆, define

f̂ang
(
ŵ⊤xnew; θ̂

)
= EZ∼N(0,1)

[
σ

(
cos(θ̂)

ŵ⊤xnew
∥ŵ∥Σ

+ sin(θ̂)Z

)]
,

• The Gaussian noise balances the bias in ŵ: the poorer the alignment between w⋆

and ŵ, the greater the magnitude of noise required to maintain calibration.

• If ŵ is perfectly aligned with w⋆ (cos2 = 1), then the Gaussian component

vanishes: we trust our original predictions completely and vice versa.

17
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Main Results: Provable Calibration

& Optimality



Result 1: Well–Calibration Theorem

Theorem (Li and S. ’25+)

Assume the link function is continuous. Then, the predictor f̂ang(·; θ̂) is
well–calibrated as d , n→∞ with n/d → (0,∞); that is, for any p in its range,

∆cal
p

(
f̂ang(·; θ̂)

)
= p − E

[
σ
(
w⊤

⋆ xnew
) ∣∣∣ f̂ang(ŵ⊤xnew; θ̂) = p

]
→ 0,

when θ̂ is a consistent estimator for θ⋆.

• Provable calibration in high dimensions

• It holds for a wide class of estimators ŵ and link functions σ

• Consistent angle estimator can be developed from Bellec (2022)

18
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Proof idea using tower property

Let us define the following event

A := f̂ang
(
ŵ⊤xnew; θ⋆

)
= p.

We have when θ̂ = θ∗

Exnew

[
σ
(
w⊤

⋆ xnew
)
| A
]

(i)
= Exnew

[
Exnew

[
σ
(
w⊤

⋆ xnew
)
| x⊤newŵ

]
| A
]

(ii)
= Exnew

[
EZ

[
σ

(
1

∥ŵ∥Σ
· cos (θ∗) · x⊤newŵ+ sin (θ∗) · Z

)]
| A
]

= Exnew

[
f̂ang

(
ŵ⊤xnew; θ⋆

)
| A
]

= p.

where (i) follows from tower property, (ii) follows from conditional Gaussian

distribution. The rest is checking convergence as |θ̂ − θ∗| → 0.
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= p.

where (i) follows from tower property, (ii) follows from conditional Gaussian

distribution. The rest is checking convergence as |θ̂ − θ∗| → 0.
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Is calibration enough?

While calibration is important, does our predictor perform well otherwise?

• We want a predictor that is not only calibrated but has desirable properties in

terms of other performance metrics as well

• Once choice: ask for calibrated predictors as “close” as possible to the true

conditional probability σ(⟨w⋆, x⟩).

We establish this through the lens of Bregman divergence.
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A Quick Detour: Bregman Divergence

For a strictly convex, differentiable function ϕ : R2 → R, define the Bregman

divergence between two vectors P,Q ∈ R2 to be

Dϕ(P,Q) = ϕ(P)− ϕ(Q)− ⟨P − Q,∇ϕ(Q)⟩.

• Take ϕ(x) = ∥x∥2: generates squared Euclidean distance

• Take ϕ(x) =
∑

j xj log xj : recovers KL divergence

21



Three random probability vectors of interest

With F : R→ [0, 1], define

q⋆ =

(
σ(w⊤

⋆ xnew)

1− σ(w⊤
⋆ xnew)

)
︸ ︷︷ ︸

True label prob.

, q̂F =

(
F (ŵ⊤xnew)

1− F (ŵ⊤xnew)

)
︸ ︷︷ ︸

Prob. based on a general F and estimator ŵ

,

q̂ang(θ̂) : =

(
f̂ang(ŵ

⊤xnew; θ̂)

1− f̂ang(ŵ
⊤xnew; θ̂)

)
︸ ︷︷ ︸

Prob. obtained from our angular predictor

All three are random probability vectors, randomness coming from xnew, ŵ, θ̂
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Result 2: Bregman Optimality

Theorem (Li & S. ’25+)

Let ϕ : R2 → R be any strictly convex differentiable function with finite Exnew [ϕ(q⋆)].

(i) The expected Bregman loss Exnew

[
Dϕ

(
q⋆, q̂F

)]
admits a unique minimizer (upto

a.s. equivalence) among all predictors of the form F (ŵ⊤xnew).

(ii) Denote this minimizer by F⋆ = argminF Exnew

[
Dϕ

(
q⋆, q̂F

)]
. As n, d →∞, in

probability,

∥q̂ang(θ̂)− F⋆(ŵ
⊤xnew)∥22 → 0

Informally, among a natural class of predictors that are functions of ⟨ŵ, x⟩, our Angular
Calibration predictor is uniquely optimal in a Bregman divergence sense.
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Proof idea

Application of Banerjee et al. (2005) : for random vectors X,Y,Z with suitable

expectations finite

arg min
Y∈f (Z)

E [Dϕ(X,Y)] = E[X | Z].

Assign

X←

(
(σ(w⊤

⋆ xnew)

1− σ(w⊤
⋆ xnew)

)
, Y←

(
(F (ŵ⊤xnew)

1− F (ŵ⊤xnew)

)
, Z← ŵ⊤xnew.

Then

E[X | Z] = E
[( (σ(w⊤

⋆ xnew)

1− σ(w⊤
⋆ xnew)

)
| x⊤newŵ

]
=

 (f̂ang
(
ŵ⊤xnew; θ⋆

)
1− f̂ang

(
ŵ⊤xnew; θ⋆

)
by Gaussianity. The rest is checking convergence as |θ̂ − θ∗| → 0.
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Takeaway

Our angular predictor faces no trade-off between between calibration and optimality,

if the latter is measured as minimizing the Bregman loss from the true label

probabilities

25



Do popular calibration algorithms

inherit such properties?



Platt Scaling

Platt scaling fits a mapping parameterized by A,B

FA,B(u) = σ(Au + B), A,B ∈ R

by minimizing a logistic negative log–likelihood on a holdout set:

ℓ̂nho(FA,B) =

nho∑
i=1

[
− yho,i log

(
FA,B(ŵ

⊤xho,i )
)
− (1− yho,i ) log

(
1− FA,B(ŵ

⊤xho,i )
)]

,

i.e., compute

Ânho , B̂nho = argmin(A,B)∈H ℓ̂nho

(
FA,B

)
. The Platt scaling predictor is given by

f̂ nhoplatt(ŵ
⊤xnew) = σ

(
Ânho · ŵ⊤xnew + B̂nho

)
,

with ŵ: regularized ERM as before computed on non-holdout data
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with ŵ: regularized ERM as before computed on non-holdout data

26



Platt Scaling

Platt scaling fits a mapping parameterized by A,B

FA,B(u) = σ(Au + B), A,B ∈ R

by minimizing a logistic negative log–likelihood on a holdout set:

ℓ̂nho(FA,B) =

nho∑
i=1

[
− yho,i log

(
FA,B(ŵ
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with ŵ: regularized ERM as before computed on non-holdout data

26



Platt Scaling

Platt scaling fits a mapping parameterized by A,B

FA,B(u) = σ(Au + B), A,B ∈ R

by minimizing a logistic negative log–likelihood on a holdout set:

ℓ̂nho(FA,B) =

nho∑
i=1

[
− yho,i log

(
FA,B(ŵ
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Why Platt scaling works

• The logistic negative log-likelihood is the KL divergence between empirical and

predicted probabilities.

• Intuitively, if the probability estimates are not calibrated, the negative

log-likelihood will be higher.

• Platt scaling shifts and rescales the argument of the sigmoid so the predicted

probabilities mimic the empirical frequencies.
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Result 3: The Surprising Power of Platt Scaling

Theorem (Li and S. ’25+)

If link function is approximately probit (x) = Φ(ax + b) for some a ̸= 0 and b ∈ R,
then we have under suitable technical conditions, as nho →∞,

sup
u∈R

∣∣∣f̂ nhoplatt(u)− f̂ang(u; θ̂)
∣∣∣→ 0.

• Informally, if σ is a probit link function (or approximated by one up to an affine

transformation—e.g., sigmoid(x) ≈ Φ(
√
π/8 x)), this simple decades old heuristic

recovers the optimal “angular” correction for larger and larger holdout sets.

• This provides the first theoretical justification for Platt scaling in high dimensions.

Platt scaling is provably calibrated and Bregman optimal in high dimensions when

using large holdout sets.
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Simulation
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Figure 1: Platt scaling of a logistic ridge predictor converges to our angular predictor, as

holdout set size increases. We set Σkl = 0.5|k−l|, ∀k, l ∈ [d ] with n = 1000, d = 2000. 29



Proof steps

(i) By basic properties of Gaussian cdf, show that angular predictor is contained in

search space of Platt scaling, i.e., for suitable A⋆,B⋆,

f̂ang(u; θ∗) = σ(A∗ · u + B∗)

(ii) Show the loss function ℓ̂nho(F ) converges to KL divergence uniformly (as nho →∞)

ℓ⋆(F ) = Exnew

[
DKL

((
(σ(w⊤

⋆ xnew)

1− σ(w⊤
⋆ xnew)

)∥∥∥∥
(

(F (ŵ⊤xnew)

1− F (ŵ⊤xnew))

))]

(iii) Angular predictor minimizes the limit while Platt scaling minimizes ℓ̂nho(F ),

convergence follows under usual minimizer consistency conditions
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Illustration: Reliability Plots

1. Predict: Run calibrated classifier on test set to obtain predicted probabilities for

each sample.

2. Bin the Data: Divide the range [0, 1] of predicted probabilities into a fixed

number of bins (e.g., 10 equally spaced bins).

3. Compute Averages: For each bin, calculate empirical frequency (fraction of

positive labels) for samples in that bin.

4. Plot the Results: Plot each bin’s average predicted probability (x-axis) against

its empirical frequency (y-axis). Overlay the ideal calibration line (the diagonal

y = x).

Points that lie close to the 45◦ diagonal indicate good calibration.
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Experiments
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Figure 2: Reliability plots for logistic ridge predictor. Left panel uses a small holdout set for

Platt scaling with nho = 100; Right panel uses a large holdout set with nho = 2000.
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Universality? NonGaussian designs
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Figure 3: Rademacher entries. Upper Row: sigmoid. Bottom Row: clipped relu.
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Universality? NonGaussian designs
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Figure 4: Unif[-1,1] entries. Upper Row: sigmoid. Bottom Row: clipped relu. 34



Remark on extension

Base proofs naturally extend to multi-index models:

Fix K ≥ 2 and let W⋆ = [w⋆1, . . . ,w⋆K ] ∈ Rd×K . Define

G := W⊤
⋆ xnew ∈ RK , Prob[ynew = 1|xnew] = σ(G),

where σ is now generalized link (vector- or scalar-valued). This setup covers:

• Two-layer nets (frozen outer layer): σ(u) =
∑

k ak σ(uk)

• Multi-class logistic models

• Additive index model: σ(u) =
∑

k fk(uk)

• Interaction index model: σ(u) =
∑

k fk(uk) +
∑

k<ℓ hkℓ(uk , uℓ)

Bottleneck: Angle estimation, needs case-by-case algorithms
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Semi-real experiments
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Conclusion: Key Takeaways

• Calibration is not just an empirical ”hack”; it can be understood from first

principles, even in challenging high-dimensional settings.

• The geometry of estimation, specifically the angle ∠(ŵ ,w⋆), governs the quality

of calibration in single-index odels.

• Our Angular Calibration method is simple, intuitive, and provably achieves both

calibration and Bregman-optimality.

• Classical Platt scaling has surprising theoretical depth: it implicitly performs this

optimal geometric correction in high dimensions.
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Open Questions

Do our results admit universality? Should work analogous to existing proofs for

training and generalization errors

Performance of other popular calibration algorithms? Do other methods such as

temperature scaling and expectation consistency admit similar optimality properties?

When can calibration and optimality co-exist? Are other notions of optimality

beyond minimizing Bregman divergence compatible with calibration?
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Part II: Data Integration

(Distribution Shift)



Why Data Integration?

• Modern data sources are heterogeneous: multi-source, multi-sensor, multi-modal.

• Integrating diverse datasets enables improved, robust, generalizable models.

• Critical in machine learning as well as modern science; Examples :

• Healthcare: Multiple hospitals measuring the same outcome but populations differ

Or combining different modes, e.g., Imaging + Genetics + Clinical Measurement

• Social Media: Text + Images + Networks, Sensor Fusion: Radar + Cameras in

autonomous driving, ...

39



Why Data Integration?

• Modern data sources are heterogeneous: multi-source, multi-sensor, multi-modal.

• Integrating diverse datasets enables improved, robust, generalizable models.

• Critical in machine learning as well as modern science; Examples :

• Healthcare: Multiple hospitals measuring the same outcome but populations differ

Or combining different modes, e.g., Imaging + Genetics + Clinical Measurement

• Social Media: Text + Images + Networks, Sensor Fusion: Radar + Cameras in

autonomous driving, ...

39



Why Data Integration?

• Modern data sources are heterogeneous: multi-source, multi-sensor, multi-modal.

• Integrating diverse datasets enables improved, robust, generalizable models.

• Critical in machine learning as well as modern science; Examples :

• Healthcare: Multiple hospitals measuring the same outcome but populations differ

Or combining different modes, e.g., Imaging + Genetics + Clinical Measurement

• Social Media: Text + Images + Networks, Sensor Fusion: Radar + Cameras in

autonomous driving, ...

39



Why Data Integration?

• Modern data sources are heterogeneous: multi-source, multi-sensor, multi-modal.

• Integrating diverse datasets enables improved, robust, generalizable models.

• Critical in machine learning as well as modern science; Examples :

• Healthcare: Multiple hospitals measuring the same outcome but populations differ

Or combining different modes, e.g., Imaging + Genetics + Clinical Measurement

• Social Media: Text + Images + Networks, Sensor Fusion: Radar + Cameras in

autonomous driving, ...

39



Why Data Integration?

• Modern data sources are heterogeneous: multi-source, multi-sensor, multi-modal.

• Integrating diverse datasets enables improved, robust, generalizable models.

• Critical in machine learning as well as modern science; Examples :

• Healthcare: Multiple hospitals measuring the same outcome but populations differ

Or combining different modes, e.g., Imaging + Genetics + Clinical Measurement

• Social Media: Text + Images + Networks, Sensor Fusion: Radar + Cameras in

autonomous driving, ...

39



Why Data Integration?

• Modern data sources are heterogeneous: multi-source, multi-sensor, multi-modal.

• Integrating diverse datasets enables improved, robust, generalizable models.

• Critical in machine learning as well as modern science; Examples :

• Healthcare: Multiple hospitals measuring the same outcome but populations differ

Or combining different modes, e.g., Imaging + Genetics + Clinical Measurement

• Social Media: Text + Images + Networks, Sensor Fusion: Radar + Cameras in

autonomous driving, ...

39



Why Data Integration?

• Modern data sources are heterogeneous: multi-source, multi-sensor, multi-modal.

• Integrating diverse datasets enables improved, robust, generalizable models.

• Critical in machine learning as well as modern science; Examples :

• Healthcare: Multiple hospitals measuring the same outcome but populations differ

Or combining different modes, e.g., Imaging + Genetics + Clinical Measurement

• Social Media: Text + Images + Networks, Sensor Fusion: Radar + Cameras in

autonomous driving, ...

39



What Makes Distribution Shift Challenging?

• Data come from sources with different noise, bias, and covariate structures.

• Distributional heterogeneity, e.g., covariate or label shift or mismatched features

• Theoretical understanding under-developed compared to “single distribution”

statistics/machine learning.

Distribution A

Distribution B

Scenario A: Integration useless

Distribution A

Distribution B

Scenario B: Integration useful

How do we identify in a data-adaptive manner whether we are in Scenario A or B?
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Classical Approaches

• Concatenation: Merge features, train a joint model.

• Ensemble Methods: Train models separately, then combine predictions.

• Transfer/Domain Adaptation: Transfer knowledge from one “source” to

another “target” domain.

• Statistical Data Fusion: Methods to combine inferences from parallel studies,

e.g. Bayesian hierarchical models, meta-analysis, etc.

Challenges remain in understanding the fundamentals of the problem

e.g., where does data fusion help vs hurt?
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Our interest: Multi-source data integration

M datasets, from possibly different distributions. Samples i.i.d. in each.

For simplicity, assume linear models and M = 2. So we observe (y(k),X(k)) with

y(k) = X(k)θ(k) + ϵ(k), k = 1, 2

• X(k) ∈ Rnk×d : X (k) = Z (k)(Σ(k))1/2, Z (k) entries i.i.d. mean 0, variance 1; Σ(k)

bounded eigenvalues

• nk : Number of samples (typically n1 ≫ n2); n1 + n2 =: n.

• ϵ(k) i.i.d. mean 0, finite variance σ2

Distribution Shift:

• Concept Shift: θ(1) ̸= θ(2).

• Covariate Shift: Σ(1) ̸= Σ(2)
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Goal

Predict in target that has low sample size with better accuracy by using source samples

rather than using target only data.

Question: How do we leverage the source data in a principled way to improve

prediction accuracy?

This talk: Study in an overparametrized regime (d > n1 + n2) through the lens of

min-norm interpolation: one of the most commonly seen implicit regularized limits in

the ML literature
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Quick Detour: Implicit

Regularization and Min-norm

Interpolation



Implicit Regularization

With suitable initialization, step size, etc. modern ML algorithms show implicit

regularization to special prediction rules/classifiers

Examples abound:

– One of earliest example: AdaBoost (Zhang and Yu ’05)

– GD (suitable initialization...) on overparametrized unregularized logistic loss (Soudry et

al. ’18)

– GD on linear convolutional neural networks (Gunasekar ’18)

– GD training a self-attention layer, i.e. a stylized version of a transformer (Tarzanagh et

al ’23; Vasudeva et al ’24)
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Utility?

• Often yields new insights on algorithms

• Common recipe: Study the implicit regularized limit

→ alg. properties at convergence

Theorem (An example result: Liang and S. AoS ’22)

In binary classification, with proper (non-vanishing) stepsize, Adaboost iterates θ̂
t

satisfy for all t ≥ T (n, d ,SNR)

Misclassification Error(θ̂
t
) ≈ P (c⋆1YZ1 + c⋆2Z2 < 0) , a.s.

• Precise characterization of (Y ,Z1,Z2) and (c⋆1 , c
⋆
2 , s

⋆)

• Approach: Characterize prediction error of the limiting min-ℓ1-norm interpolator

and use connection with AdaBoost; Complements classical bounds by Schapire et

al ’98, Koltchinskii and Panchenko ’05; similar characterization possible for any

algorithm converging to these interpolators
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Min-norm interpolators

For i.i.d. data (yi , x i ) that can be perfectly interpolated, define the min-ℓq-norm

interpolator as

θ̂q = argmin ∥θ∥q s.t. yi = x⊤
i θ, yi ∈ R or yix⊤

i θ ≥ 0, yi ∈ {1,−1}

• Important class–arises as implicit regularized limits of many algs

• Extensively studied under single distribution overparametrized models (Montanari et

al. ’19, Deng et al. ’19, Liang and S. ’20, Chatterji et al. ’20 Donhauser et al. ’21, Zhou et al. ’21, ’22)

• Under-explored in presence of distributions shifts; Mallinar et al. ’24, Patil et al. ’24

study out-of-distribution settings with no target data during training
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Natural analogue of min-norm interpolators under distribution shifts?

– Start from simplest: q = 2

– How do we think about the analogue for distribution shift settings?

– Revisit single training data results

Different formulations

• Min-ℓ2-norm interpolator: argmin ∥θ∥2 s.t. yi = x⊤
i θ for all i

• Alternate (Hastie et al. ’22): Ridgeless or λ→ 0+ limit of solution to

θ̂λ = argmin
θ

1

2n
∥y − Xθ∥2 + λ∥θ∥2

47



Natural analogue of min-norm interpolators under distribution shifts?

– Start from simplest: q = 2

– How do we think about the analogue for distribution shift settings?

– Revisit single training data results

Different formulations

• Min-ℓ2-norm interpolator: argmin ∥θ∥2 s.t. yi = x⊤
i θ for all i

• Alternate (Hastie et al. ’22): Ridgeless or λ→ 0+ limit of solution to

θ̂λ = argmin
θ

1

2n
∥y − Xθ∥2 + λ∥θ∥2

47



Natural analogue of min-norm interpolators under distribution shifts?

– Start from simplest: q = 2

– How do we think about the analogue for distribution shift settings?

– Revisit single training data results

Different formulations

• Min-ℓ2-norm interpolator: argmin ∥θ∥2 s.t. yi = x⊤
i θ for all i

• Alternate (Hastie et al. ’22): Ridgeless or λ→ 0+ limit of solution to

θ̂λ = argmin
θ

1

2n
∥y − Xθ∥2 + λ∥θ∥2

47



Natural analogue of min-norm interpolators under distribution shifts?

– Start from simplest: q = 2

– How do we think about the analogue for distribution shift settings?

– Revisit single training data results

Different formulations

• Min-ℓ2-norm interpolator: argmin ∥θ∥2 s.t. yi = x⊤
i θ for all i

• Alternate (Hastie et al. ’22): Ridgeless or λ→ 0+ limit of solution to

θ̂λ = argmin
θ

1

2n
∥y − Xθ∥2 + λ∥θ∥2

47



Segue from regularized regression

• Regularized regression extensively studied for transfer learning (Yang et al. ’20, Bastani

’21, Cai et al. ’21 Li et al. ’22, Zhang et al. ’22, Tian and Feng ’23, Zhou et al. ’24, new synthetic

correlated data models proposed in Gerace et al. ’22)

• Natural regularized loss: for suitable weights w1,w2 ≥ 0,

argmin
θ

{w1

n
∥y (1) − X (1)θ∥22 +

w2

n
∥y (2) − X (2)θ∥22 + λ∥θ∥22

}

• Ridgeless limit for any w1,w2 is a pooled min-ℓ2-norm interpolator:

θ̂pool = argmin
θ
∥θ∥2 s.t. y

(k)
i = x (k)

i
⊤θ for all i,k

In some sense, this is both early and intermediate fusion estimator

48
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Goal

• Characterize its out-of-sample prediction error—dependence on dimensionality,

level of shifts, SNRs, etc.

• Formally, for x0 ∼ Px (2) , characterize out-of-sample prediction risk on target

distribution

Risk = R(θ̂pool) = E[(x⊤
0 θ̂pool − x⊤

0 θ
(2))2|X (1),X (2)]

• Guarantees will be w.h.p. over distribution of covariates;
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Risk under Concept Shift

Theorem (Song, Bhattacharya, S. ’24+)
Assume Σ(1) = Σ(2) = I ,X (1),X (2) Gaussian. With high probability over randomness

of X (1),X (2)

R(θ̂pool) =
n

d − n
σ2 +

d − n

d
||θ(2)||22 +

n1(d − n1)

d(d − n)
||θ(1) − θ(2)||22 + o(1)
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Concept Shift: Corollary

SNR (Signal-to-noise ratio) :=
||θ(2)||22

σ2 , SSR (Shift-to-signal ratio) :=
||θ(1)−θ(2)||22

||θ(2)||22

Theorem (Song, Bhattacharya, S. ’24+)
Under model shift assumptions

1. If SNR ≤ d2

(d−n)(d−n2)
, then

R(θ̂
(2)

) ≤ R(θ̂pool) + o(1) (1)

2. Else, define ρ := d−n
d−n1

− d2

(d−n1)(d−n2)
· 1
SNR . When SSR ≥ ρ, then (1) holds; when

SSR < ρ, then

R(θ̂pool) ≤ R(θ̂
(2)

) + o(1)

Takeaways: (i) When the SNR of target is small, pooling always hurts, increases noise

(ii) If SNR is large transfer gain depends on the degree of shift
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Effects of SNR
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• SNR = ∥θ(2)∥2/σ2

• n2 = 100, d = 600, Shift-to-signal ratio (SSR)= ∥θ(1) − θ(2)∥2/∥θ(2)∥2 = 0.2

• Takeaways: For low SNR, pooling does not help

• For higher SNR it does till n1 below a threshold
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Effects of SSR
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• n2 = 100, d = 600, SNR = 5

• Transfer helps for low SSR but not higher SSR

• Key: Data-driven SNR, SSR estimators in paper

Useful to decide to pool or not to pool
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Optimal target sample size

Theorem (Song, Bhattacharya, S. ’24+)
In the setting of our previous theorem, the following target sample size optimizes the

generalization error:

n2,opt = arg min
n2∈N

R(θ̂pool) =

(
d − n1 −

√
d2

SNR
+ n1SSR

)
+

• Consistent SNR, SSR estimators in the paper, producing consistent n̂2,opt

• Similar results can be derived for optimal source sample size for generalization

• Key takeaway: Optimal sample size involves SNR, SSR, etc.

• Estimate of RHS provide principled guidance for how many samples to include

Including too much can hurt performance: contrary to traditional statistical wisdom!
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Covariate shift: Setting

• Recall y (k) = X (k)θ(k) + ε(k); k = 1 source, k = 2 target

• X (k) = Z (k)(Σ(k))1/2, Z (k) entries i.i.d. mean 0, variance 1

• Assume θ(1) = θ(2), (Σ(1),Σ(2)) = V (Λ(1),Λ(2))V⊤ (Simultaneous

diagonalizability)

• Relevant distributions (also appear in Hastie et al ’22):

(i)Ĥd(a, b) :=
1

d

d∑
i=1

1{(a,b)=(λ
(1)
i ,λ

(2)
i )},

l

(ii)Ĝd(a, b) :=
1

||θ(2)||22

d∑
i=1

⟨θ(2), v i ⟩21{(a,b)=(λ
(1)
i ,λ

(2)
i )}
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Risk under Covariate Shift

Theorem (Song, Bhattacharya, S. ’24+)
Error variance: σ2, dimension to total sample size ratio d/n = γ; n = n1 + n2

R(θ̂pool) =− σ2γ

∫
λ(2)(ã3λ

(1) + ã4λ
(2))

(ã1λ(1) + ã2λ(2) + 1)2
dĤd(λ

(1), λ(2))

+ ||θ(2)||22 ·
∫

b̃3λ
(1) + (b̃4 + 1)λ(2)

(b̃1λ(1) + b̃2λ(2) + 1)2
dĜd(λ

(1), λ(2)) + o(1)

• Precise description of constants ãi , b̃i in paper

• Depends only on λ(i)’s not v ′
i s

• More involved to study transfer versus target only performance
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dĜd(λ

(1), λ(2)) + o(1)

• Precise description of constants ãi , b̃i in paper
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Example (Does covariate shift help?)

• Setup: Define M to be diagonal with reciprocal eigenvalues (d even),

λ
(1)
d+1−i = 1/λ

(1)
i for i = 1, ..., d/2

• Define R̂(M) := R(θ̂pool|Σ(1) = M ,Σ(2) = I )
• So R̂(I ) denotes the no-covariate shift case

Theorem (Song, Bhattacharya, S. ’24+)

1. When n1 < min{d/2, p − n2}, then

R̂(M) < R̂(I ) + o(1)

2. When d/2 ≤ n1 < d − n2, then,

R̂(M) ≥ R̂(I ) + o(1)

– Takeaway: Under sufficient overparametrization, covariate shift helps
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Illustration
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• λ
(1)
d+1−i = 1/λ

(1)
i = 1

κ for i = 1, ..., d/2, and Σ(2) = I , d = 600, n2 = 100

• κ = 1 (red) gives risk curve for no cov. shift

• The crossing point on left is n1 = d/2. Below, cov. shift helps
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Risk monotonicity in eigenvalue

Theorem (Song, Bhattacharya, S. ’24+)

• Σ(1) has two eigenvalues (previous plot setting): λ
(1)
d+1−i = 1/λ

(1)
i = 1

κ for

i = 1, ..., d/2

• Let M(κ) denote such a diagonal matrix

• Σ(2) = I

(i) When n1 < min{d/2, d − n2}, R̂(M(κ1)) ≤ R̂(M(κ2)) + o(1) for any κ1 > κ2 > 1

(ii) When d/2 < n1 < d − n2, R̂(M(κ1)) ≥ R̂(M(κ2)) + o(1) for any κ1 > κ2 > 1

(iii) If n1 = min{d/2, d − n2}, then R̂(M(κ)) does not depend on κ ≥ 1

– Takeaway: Under sufficient overparametrization, the more the covariate shift, the

less the risk and vice versa
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Conclusion: Key Takeaways

• Heterogeneity: opportunity and risk.

• Distribution shift in the interpolating regime can be rigorously analyzed.

• We provide the first precise, analytic formulas for the generalization error of

pooled min-norm interpolator under concept and covariate shift.

• Our results reveal sharp phase transitions thresholds for positive vs. negative

transfer, quantifying when to share, when to “keep separate.”

• The analysis required developing novel tools in Random Matrix Theory,

specifically a new anisotropic local law.
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Future Directions

Deeper dive into covariate shift: Understand covariate shift phenomena for broader

class of distributions?

Other Estimators:

(i) Late fusion: Average estimators trained on separate datasets

(ii) Compare with other interpolators or explicit regularized strategies

Beyond Linear models: Do these insights persist for classification problems, or more

complex models, e.g., multi-index or random features regression?
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Recall Key Takeaways

• Heterogeneity: opportunity and risk.

• Distribution shift in the interpolating regime can be rigorously analyzed.

• We provided the first precise, analytic formulas for the generalization error of

pooled min-norm interpolator under concept and covariate shift.

• Our results reveal sharp phase transitions thresholds for positive vs. negative

transfer, quantifying when to share, when to “keep separate.”

• The analysis required developing novel tools in Random Matrix Theory,

specifically a new anisotropic local law.
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Technical detour: Anisotropic local

laws and their utility in data

integration theory



Basic Setup

• Let Z ∈ Rn×d be a matrix with i.i.d. entries satisfying E[Zij ] = 0, Var(Zij) = 1,

and necessary moment conditions

• For some Σ ∈ Rd×d , define X = ZΣ1/2

• Suppose that d/n→ γ ∈ (0,∞)

• Consider the scaled sample covariance matrix Σ̂ = 1
nX

⊤X

Wish to understand the behavior of the empirical spectral distribution (ESD) of Σ̂:

µΣ̂ =
1

d

∑
i≤d

δλi (Σ̂)
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The resolvent–why study it?

Useful to study the ESD of the resolvent

R(z) = (Σ̂− zI)−1

and its normalized trace:

mΣ̂(z) =
1

d
Tr[R(z)] =

1

d
Tr[(Σ̂− zI)−1] =

1

d

∑
i≤d

1

λi (Σ̂)− z
=

∫
dµΣ̂(λ)

λ− z

which is precisely the Stieltjes transform of µΣ̂.

The resolvent is fundamental for statistical inference questions, e.g.,

Ridge regression yields β̂ridge = (X⊤X+ nλI)−1X⊤y =
1

n
R(−λ)X⊤y
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A global law

Assume that Σ = I. Recall that µΣ̂ converges

weakly to the Marchenko-Pastur law µγ .

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
0.0

0.2

0.4

0.6

0.8

n = 5000, p = 1000
MP density with = 0.2

In particular, the Stieltjes transform of µΣ̂ converges to the Stieltjes transform of µγ :

1

d
Tr[(Σ̂− zI)−1]︸ ︷︷ ︸

Stieltjes transform of ESD

=
1

d

∑
i≤d

1

λi (Σ̂)− z
→
∫

dµγ(t)

t − z
= mγ(z)
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A more general global law

Note 1
dTr[(Σ̂− zI)−1] = ⟨v, (Σ̂− zI)−1v⟩ for v = 1/

√
d . What about other v ∈ Cd?

Theorem (Theorem 10.16, Bai and Silverstein)
For any v ∈ Cd with ∥v∥2 = 1, we have ⟨v, (Σ̂− zI)−1v⟩ → mγ(z).

By a polarization identity, we immediately have the corollary:

⟨v, (Σ̂− zI)−1w⟩ = 1

4

(
⟨v+w, (Σ̂− zI)−1(v+w)⟩

− ⟨v−w, (Σ̂− zI)−1(v−w)⟩
− i⟨v+ iw, (Σ̂− zI)−1(v+ iw)⟩
+ i⟨v− iw, (Σ̂− zI)−1(v− iw)⟩

)
→ mγ(z)⟨v,w⟩

for v,w ∈ Cd with ∥v∥2 = ∥w∥2 = 1.
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Application: high-dimensional ridge(less) regression

Hastie et al. (2020)

• Suppose y = Xβ + ϵ for fixed β and i.i.d. noise ϵ.

• Consider the ridge estimator

β̂λ = argmin
b∈Rp

{∥y− Xb∥22 + nλ∥b∥22} =
1

n
(Σ̂+ λI)−1X⊤y

• The bias and variance expressions (conditional on X) are

BX(β̂λ,β) := ∥E[β̂λ − β | X]∥2Σ = λ2β⊤(Σ̂+ λI)−1Σ(Σ̂+ λI)−1β

VX(β̂λ,β) :=
Var(ϵ1)

n
Tr[ΣΣ̂(Σ̂+ λI)−2]

which we can study using variants of these global laws
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Applying the global law

Continue to assume Σ = I (the anisotropic global laws are similar).

Then, to analyze VX(β̂λ,β), it suffices to understand

lim
d→∞

1

d
Tr[Σ̂(Σ̂+ λI)−2] = lim

d→∞

(
1

d
Tr[(Σ̂+ λI)−1]− λ

d
Tr[(Σ̂+ λI)−2]

)
= lim

d→∞

(
1

d
Tr[(Σ̂+ λI)−1]︸ ︷︷ ︸

→mγ(−λ)

−λ · ∂

∂λ

[
1

d
Tr[(Σ̂+ λI)−1]

]
︸ ︷︷ ︸

Claim: → ∂
∂λ

mγ(−λ)

)

λ 7→ (Σ̂+ λI)−1 is analytic and uniformly bounded for λ bounded away from 0

Uniform convergence in a compact set around λ, which allows us to exchange limd→∞ and ∂
∂λ

.
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Ridgeless regression

• In the overparameterized regime (d > n), for the min-norm interpolator

β̂ = argmin
b∈Rp

{∥b∥2 : Xb = y}

= (X⊤X)†X⊤y

= lim
λ→0+

(X⊤X+ nλI)−1X⊤y

• The bias and variance expressions (conditional on X) are

BX(β̂;β) = β⊤(I − Σ̂
†
Σ̂)Σ(I − Σ̂

†
Σ̂)β, VX(β̂;β) =

Var(ϵ1)

n
Tr[Σ̂

†
Σ]

where Σ̂
†
= limλ→0+(Σ̂+ λI)−1

• Previous argument fails since we lose uniform boundedness; need new tools!
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Local laws



Isotropic local laws

Global laws establish control of the spectrum of Σ̂ on an average sense.

• To probe eigenvalue behavior on a finer scale, we need a local law that allows for

|z | → 0 as n→∞.

Theorem (Bloemendal et al., 2014, Theorem 2.4, roughly)
For sufficiently small ϵ, if z = E + iη satisfies n−1+ϵ ≤ η and |z | ≥ ϵ, then

|⟨v, (Σ̂− zI)−1w⟩ −mγ(z)⟨v,w⟩| ≺

√
Immγ(z)

nη
+

1

nη

for deterministic vectors v,w ∈ Cd of fixed norm.

Morally, says (Σ̂− zI)−1 ≈ mγ(z)I in a much stronger sense than a global law.

70



Isotropic local laws

Global laws establish control of the spectrum of Σ̂ on an average sense.

• To probe eigenvalue behavior on a finer scale, we need a local law that allows for

|z | → 0 as n→∞.

Theorem (Bloemendal et al., 2014, Theorem 2.4, roughly)
For sufficiently small ϵ, if z = E + iη satisfies n−1+ϵ ≤ η and |z | ≥ ϵ, then

|⟨v, (Σ̂− zI)−1w⟩ −mγ(z)⟨v,w⟩| ≺

√
Immγ(z)

nη
+

1

nη

for deterministic vectors v,w ∈ Cd of fixed norm.

Morally, says (Σ̂− zI)−1 ≈ mγ(z)I in a much stronger sense than a global law.

70



Isotropic local laws

Global laws establish control of the spectrum of Σ̂ on an average sense.

• To probe eigenvalue behavior on a finer scale, we need a local law that allows for

|z | → 0 as n→∞.

Theorem (Bloemendal et al., 2014, Theorem 2.4, roughly)
For sufficiently small ϵ, if z = E + iη satisfies n−1+ϵ ≤ η and |z | ≥ ϵ, then

|⟨v, (Σ̂− zI)−1w⟩ −mγ(z)⟨v,w⟩| ≺

√
Immγ(z)

nη
+

1

nη

for deterministic vectors v,w ∈ Cd of fixed norm.

Morally, says (Σ̂− zI)−1 ≈ mγ(z)I in a much stronger sense than a global law.

70



Application: high-dimensional ridgeless regression, revisited

Recall that for fixed λ, the risk calculation required

lim
d→∞

1

d
Tr[Σ̂(Σ̂+ λI)−2] = lim

d→∞

(
1

d
Tr[(Σ̂+ λI)−1]︸ ︷︷ ︸

→mγ(−λ)

−λ · ∂

∂λ

[
1

d
Tr[(Σ̂+ λI)−1]

]
︸ ︷︷ ︸

Claim: → ∂
∂λ

mγ(−λ)

)

By simplifying the bound in the anisotropic local law, one can show that∣∣∣∣ 1d Tr[(Σ̂+ λI)−1]−mγ(−λ)
∣∣∣∣ ≲ 1

Re(λ) · n(1−ϵ)/2

and further ∣∣∣∣ ∂∂λ
[
1

d
Tr[(Σ̂+ λI)−1]−mγ(−λ)

]∣∣∣∣ ≲ 1

Re(λ)2 · n(1−ϵ)/2

Similar bounds allow to compute the interpolator risk (note these assumed Σ = I).
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Anisotropic setting

Let Σ be any covariance matrix (i.e., Σ ̸= I).

No reason to expect the resolvent (Σ̂− zI)−1 to behave as a multiple of I.

If the

eigenvalues of Σ converge to a distribution H, then the LSD of Σ̂ has a Stieltjes

transform mγ,Σ satisfying

mγ,Σ(z) =

∫
dH(λ)

z − γλmγ,Σ(z)

Can we prove a similar anisotropic local law?
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An anisotropic local law

Theorem (Knowles and Yin, 2016, Theorem 3.21)
For (small) ϵ, if z = E + iη ∈ C+ satisfies n−1+ϵ ≤ η and |z | ≥ ϵ, then

|⟨v, (Σ̂− zI)−1w⟩ − ⟨v,−(z(I+mγ,Σ(z)Σ))−1w⟩| ≺

√
Immγ(z)

nη
+

1

nη

for deterministic vectors v,w ∈ Cd of fixed norm.

Morally, the resolvent (Σ̂− zI)−1 behaves as −(z(I+mγ,Σ(z)Σ))−1.

This is already useful for stat/ML problems with a non-trivial covariance matrix,

e.g., risk of interpolators in high-dimensional regression in presence of non-trivial

feature covariances.
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Distribution shift problems

• In the covariate shift setting, our covariance matrix is now

Σ̂ = X(1)⊤X(1) + X(2)⊤X(2)

with X(1),X(2) differing in distribution.

• Prior anisotropic local laws no longer apply.

• We establish a new anisotropic local law for the resolvent of sums of such

sample covariance matrices.

• Allows us to characterize the risk of the interpolator by tracking λ-dependent

quantities precisely through the proof.
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An anisotropic local law for covariate shift

For technical reasons, we assume that Σ(1) and Σ(2) are co-diagonalizable: i.e.,

Σ(1) = VΛ(1)V⊤, Σ(2) = VΛ(2)V⊤ with V orthogonal and Λ(1),Λ(2) diagonal.

Letting F = n−1/2[(Λ(1))1/2V⊤Z(1)⊤, (Λ(2))1/2V⊤Z(2)⊤], with

X(1) = Z(1)Σ(1),X(2) = Z(2)Σ(2), so F ∈ Rd+n×d+n

the following resolvent becomes important,

G(z) =

[(
0 F

F⊤ 0

)
−

(
zId 0

0 In

)]−1

=

(
(FF⊤ − zI)−1 (FF⊤ − zI)−1F

F⊤(FF⊤ − zI)−1 z(FF⊤ − zI)−1

)

Wish to characterize the limit G(z) of G(z) but with control of the rate as z → 0

75



An anisotropic local law for covariate shift

For technical reasons, we assume that Σ(1) and Σ(2) are co-diagonalizable: i.e.,

Σ(1) = VΛ(1)V⊤, Σ(2) = VΛ(2)V⊤ with V orthogonal and Λ(1),Λ(2) diagonal.

Letting F = n−1/2[(Λ(1))1/2V⊤Z(1)⊤, (Λ(2))1/2V⊤Z(2)⊤], with

X(1) = Z(1)Σ(1),X(2) = Z(2)Σ(2), so F ∈ Rd+n×d+n

the following resolvent becomes important,

G(z) =

[(
0 F

F⊤ 0

)
−

(
zId 0

0 In

)]−1

=

(
(FF⊤ − zI)−1 (FF⊤ − zI)−1F

F⊤(FF⊤ − zI)−1 z(FF⊤ − zI)−1

)

Wish to characterize the limit G(z) of G(z) but with control of the rate as z → 0

75



An anisotropic local law for covariate shift

For technical reasons, we assume that Σ(1) and Σ(2) are co-diagonalizable: i.e.,

Σ(1) = VΛ(1)V⊤, Σ(2) = VΛ(2)V⊤ with V orthogonal and Λ(1),Λ(2) diagonal.

Letting F = n−1/2[(Λ(1))1/2V⊤Z(1)⊤, (Λ(2))1/2V⊤Z(2)⊤], with

X(1) = Z(1)Σ(1),X(2) = Z(2)Σ(2), so F ∈ Rd+n×d+n

the following resolvent becomes important,

G(z) =

[(
0 F

F⊤ 0

)
−

(
zId 0

0 In

)]−1

=

(
(FF⊤ − zI)−1 (FF⊤ − zI)−1F

F⊤(FF⊤ − zI)−1 z(FF⊤ − zI)−1

)

Wish to characterize the limit G(z) of G(z) but with control of the rate as z → 0

75



An anisotropic local law for covariate shift

For technical reasons, we assume that Σ(1) and Σ(2) are co-diagonalizable: i.e.,

Σ(1) = VΛ(1)V⊤, Σ(2) = VΛ(2)V⊤ with V orthogonal and Λ(1),Λ(2) diagonal.

Letting F = n−1/2[(Λ(1))1/2V⊤Z(1)⊤, (Λ(2))1/2V⊤Z(2)⊤], with

X(1) = Z(1)Σ(1),X(2) = Z(2)Σ(2), so F ∈ Rd+n×d+n

the following resolvent becomes important,

G(z) =

[(
0 F

F⊤ 0

)
−

(
zId 0

0 In

)]−1

=

(
(FF⊤ − zI)−1 (FF⊤ − zI)−1F

F⊤(FF⊤ − zI)−1 z(FF⊤ − zI)−1

)

Wish to characterize the limit G(z) of G(z) but with control of the rate as z → 0

75



An anisotropic local law for covariate shift

The limit is

G(z) =

[a1(z)Λ
(1) + a2(z)Λ

(2) − zId ]
−1 0 0

0 − n
n1
a1(z)In1 0

0 0 − n
n2
a2(z)In2


where a1, a2 are the unique solutions to

a2 −
n2
n

+ γ

∫
a2λ

(2)

a1λ(1) + a2λ(2) − z
dĤ(λ(1), λ(2)) = 0

a1 −
n1
n

+ γ

∫
a1λ

(1)

a1λ(1) + a2λ(2) − z
dĤ(λ(1), λ(2)) = 0

Simultaneous diagonalizability allows for a tractable form here;

Ĥ is empirical

distribution of eigenvalues; second and third blocks allow to isolate coefficients a1, a2.
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Precise form of anisotropic local law

Theorem (Song et al., 2024)
On a suitable domain D for λ > d−1/7+ϵ and deterministic unit vectors u, v ∈ Rd+n,

sup
z∈D
|u⊤[G(z)−G(z)]v| ≺ d−1/2λ−3.

The desired anisotropic local law follows as a corollary by taking u, v to only be

nonzero in the first d entries.
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Proof outline

Recall X(1) = Z(1)Σ(1),X(2) = Z(2)Σ(2).

(a) Establish an entrywise local law for diagonal Σ(1),Σ(2):

• supz∈D max1≤i,j≤n+d |Gij(z)−Gij(z)| ≺ d−1/2λ−3

(b) Use this to establish an anisotropic local law for Gaussian Z and general Σ [Use

rotational invariance to reduce dominant terms to diagonal case]

(c) Interpolate between Gaussian Z and general Z (both with general Σ) [Usual

Lindeberg argument]

This is proof structure for anisotropic local law with single covariance matrix as well.

Our main difficulty is tracking the dependence on λ throughout, but especially in (a).

78



Proof outline

Recall X(1) = Z(1)Σ(1),X(2) = Z(2)Σ(2).

(a) Establish an entrywise local law for diagonal Σ(1),Σ(2):

• supz∈D max1≤i,j≤n+d |Gij(z)−Gij(z)| ≺ d−1/2λ−3

(b) Use this to establish an anisotropic local law for Gaussian Z and general Σ [Use

rotational invariance to reduce dominant terms to diagonal case]

(c) Interpolate between Gaussian Z and general Z (both with general Σ) [Usual

Lindeberg argument]

This is proof structure for anisotropic local law with single covariance matrix as well.

Our main difficulty is tracking the dependence on λ throughout, but especially in (a).

78



Proof outline

Recall X(1) = Z(1)Σ(1),X(2) = Z(2)Σ(2).

(a) Establish an entrywise local law for diagonal Σ(1),Σ(2):

• supz∈D max1≤i,j≤n+d |Gij(z)−Gij(z)| ≺ d−1/2λ−3

(b) Use this to establish an anisotropic local law for Gaussian Z and general Σ [Use

rotational invariance to reduce dominant terms to diagonal case]

(c) Interpolate between Gaussian Z and general Z (both with general Σ) [Usual

Lindeberg argument]

This is proof structure for anisotropic local law with single covariance matrix as well.

Our main difficulty is tracking the dependence on λ throughout, but especially in (a).

78



Proof outline

Recall X(1) = Z(1)Σ(1),X(2) = Z(2)Σ(2).

(a) Establish an entrywise local law for diagonal Σ(1),Σ(2):

• supz∈D max1≤i,j≤n+d |Gij(z)−Gij(z)| ≺ d−1/2λ−3

(b) Use this to establish an anisotropic local law for Gaussian Z and general Σ [Use

rotational invariance to reduce dominant terms to diagonal case]

(c) Interpolate between Gaussian Z and general Z (both with general Σ) [Usual

Lindeberg argument]

This is proof structure for anisotropic local law with single covariance matrix as well.

Our main difficulty is tracking the dependence on λ throughout, but especially in (a).

78



Proof sketch

(a) Establish an entrywise local law for diagonals

• Prove that a1(z) and a2(z) exist and are unique (contraction argument)

• Prove a stability result: if m1(z),m2(z) satisfy scaled versions of the equations up

to additive errors, then |m1(z)− (− n
n1
a1(z))|+ |m2(z)− (− n

n2
a2(z))| can be

controlled in terms of these errors

• Show that m1(z) =
1
n1

∑d+n1
i=d+1 Gii (z) and m2(z) =

1
n2

∑d+n1+n2
i=d+n1+1 Gii (z) satisfy

such versions of the equations upto additive errors; control error terms.
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Impact of such anistropic local laws

in other ML problems



Problem 1: Knowledge Distillation

High-dimensional Analysis of Knowledge Distillation:

Weak-to-Strong Generalization and Scaling Laws

Ildiz et al. (2024)

(Corresponds to arXiv:2410.18837)

The Problem: Knowledge distillation is a powerful technique where a small ”student”

model is trained on synthetic labels generated by a large, powerful ”teacher” model.

Goal: What is the generalization behavior of the student? Can such student perform

comparably or outperform strong teacher?
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Problem Setup and Main Findings

They study a teacher-student setup for linear models in the high-dimensional limit.

• A teacher model is trained on nT real data points (XT , yT ).

• It generates nS synthetic (”surrogate”) labels for new data XS .

• A student model is trained on this surrogate data (XS , y
teacher
S ).

Main Findings:

• Precise asymptotic formulae for the student’s final test error

• The error decomposes into terms related to the teacher’s error, the student’s

approximation error, and the number of real (nT ) vs. surrogate (nS) samples.

• Allows to quantify when student performs similar or better than teacher.
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Technical Connection to Our Work

Knowledge distillation is a form of transfer learning where knowledge is transferred via

synthetic labels.

Two kinds of samples: the ones for the teacher and the ones for the student

The

Mathematical Core: The total sample covariance matrix admits the decomposition:

Σ̂total = Σ̂teacher︸ ︷︷ ︸
Source

+Σ̂student︸ ︷︷ ︸
Target

Inherently a sum of anisotropic matrices since there are typically distribution shifts in

the data.

Similar anisotropic local laws useful.
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Similar other problems

• Weak-to-strong generalization: Reverse of Knowledge distillation in the way we

described; when teacher is weak, but wish to use it to train stronger student with

less compute than would be required to train strong student from scratch.

• Boosting generalization performance by mixing surrogate data with real data in

settings where data collection is difficult, e.g. by appending synthetic data (Ildiz

et al.2024)

• Time series forecasting where distribution shifts are common due to seasonal

changes, market shocks, etc. (Taga et al. 2025)

• Multi-objective optimization for economics problems (e.g. understanding markets:

Jagadeesan et al. ’24)

• All these problems serve as test beds for such anisotropic local laws
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Part III: Beyond Distribution Shift:

Multimodal learning



This part will be shared later
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