Models of representation learning dynamics

Andrew Saxe

Gatsby Unit & Sainsbury Wellcome Centre, UCL

Artificial Intelligence Neural Networks

Brain & Mind

Today

1. Deep linear network dynamics

2. Nontrivial initializations: Lazy, rich, & beyond

3. Nonlinear networks & the neural race reduction

Depth complicates learning dynamics

Surrogate models

- Tackling these questions in full generality is challenging
- Instead, we can analyze a surrogate model that is simpler but retains key features of the full problem
- Particularly for brain sciences, crucial to have a minimal, tractable model
 - Conceptual clarity
 - Unambiguous predictions
 - Isolate contribution of depth, data statistics, nonlinearity

Deep network

Little hope for a complete theory with arbitrary nonlinearities

Deep linear network

• Use a deep linear network as a starting point.

Gradient descent

Mean squared error loss:

$$\min_{W_1,\dots,W_D} \sum_{\mu} \left\| y^{\mu} - \left(\prod_{i=1}^D W^i \right) x^{\mu} \right\|^2$$

Gradient flow dynamics:

$$au rac{d}{dt} W^l = \left(\prod_{i=l+1}^D W^i
ight)^T \left[\Sigma^{yx} - \left(\prod_{i=1}^D W^i
ight)\Sigma^{xx}
ight] \left(\prod_{i=1}^{l-1} W^i
ight)^T \qquad l=1,\square\;,D$$

A linear chain

D layers of weights

Error surface

Depth introduces a saddle point

Individual layer weight b

$$b(t)$$
 ... $b(t)$ $b(t)$

Gradient descent dynamics

Analytic learning trajectory

Shallow (
$$D=1$$
):

$$a(t) = \frac{s}{\lambda} \left(1 - e^{-t/\tau} \right) + a_0 e^{-t/\tau}$$

$$a(t) = \frac{s/\lambda}{1 - \left(1 - \frac{s}{\lambda a_0}\right)e^{-\frac{2st}{\tau}}}$$

V. Deep (D
$$\sqcup$$
): $a(t)=rac{s/\lambda}{1+W\left[\left(rac{s}{\lambda a_0}-1
ight)e^{rac{s}{\lambda a_0}-1-t/ au}
ight]}$

Analytic learning trajectory

Andrew Saxe

16

Full networks act like several 1D chains

Shallow

Deep

Depth introduces stage-like transitions

Shallow

ŷ x

Deep

Training speed

- How does training speed scale with depth?
- Time difference for deep net vs shallow net is

$$t_{\infty} - t_1 \approx O\left(\frac{1}{sb_0^D}\right)$$

 t_D epochs to train depth D network

b₀ Initial layer singular value

s Minimum nonzero singular value

D Depth

Deep learning speed is highly sensitive to initial conditions

Effect of initialization

Small random weights scale exponentially

$$t_{\infty} - t_1 \approx O(1/b_0^D)$$

Pretraining + fine-tuning scales linearly

$$t_{\infty} - t_1 \approx O(D/b_0^2)$$

Orthogonal initialization: depth-independent

$$t_{\infty} - t_1 \approx O(1)$$

Connecting neural nets and graphical models

The "World":
Structured generative model

The "Learner":

Deep linear network

Analytic link

 In the limit of many features, what matters to learning dynamics is SVD of correlation structure

- Can find this exactly for certain graphical models
 - Partitions
 - Trees
 - Grids/rings

Learning diverse structures

Progressive differentiation

These networks **must** exhibit progressive differentiation:

- Singular vectors mirror hierarchy
- Singular values decay with depth

Progressive differentiation

Depth introduces a hierarchy of saddle points

Individual variability amidst structure

Learning to make perceptual decisions from naïve to expert

Sam Liebana

Aeron Laffere

Chiara Toschi

Peter Zatka-Haas

Louisa Schilling

Rafal Bogacz

Armin Lak

Learning to make perceptual decisions from naïve to expert

Full task from day 1 without any change over learning

Learning to make perceptual decisions from naïve to expert

Mice exhibit diverse learning trajectories

Learning trajectories are individually diverse but systematic

A Deep RL Neural Network

$$\mathcal{L}^{\text{cortex}} = \frac{1}{2} \delta_{\text{tot}}^2 = \frac{1}{2} (\text{Rew} - Q_{\text{ch}}^{\text{tot}})^2$$

$$\mathcal{L}^{\text{const}} = \frac{1}{2} \delta_{\text{const}}^2 = \frac{1}{2} (\text{Rew} - Q_{\text{ch}}^{\text{const}})^2$$

$$\mathcal{L}^{\text{stim}} = \frac{1}{2} \delta_{\text{stim}}^2 = \frac{1}{2} (\text{Rew} - Q_{\text{ch}}^{\text{stim}})^2$$

Model captures behavior

Dynamics pass near a hierarchy of saddle points

Saddle points arise through depth

Today

1. Deep linear network dynamics from tabula rasa initialization

2. Nontrivial initializations: Lazy, rich, & beyond

3. Nonlinear networks & the neural race reduction

Partitioned solution

$$\mathbf{Q}\mathbf{Q}^{T}(t) = \begin{pmatrix} \mathbf{Z_{1}}(t)\mathbf{A}^{-1}(t)\mathbf{Z_{1}^{T}}(t) & \mathbf{Z_{1}}(t)\mathbf{A}^{-1}(t)\mathbf{Z_{2}^{T}}(t) \\ \mathbf{Z_{2}}(t)\mathbf{A}^{-1}(t)\mathbf{Z_{1}^{T}}(t) & \mathbf{Z_{2}}(t)\mathbf{A}^{-1}(t)\mathbf{Z_{2}^{T}}(t) \end{pmatrix},$$

with the time-dependent variables $\mathbf{Z_1}(t) \in \mathbb{R}^{N_i \times N_h}$, $\mathbf{Z_2}(t) \in \mathbb{R}^{N_o \times N_h}$, and $\mathbf{A}(t) \in \mathbb{R}^{N_h \times N_h}$:

$$Z_{1}(t) = \frac{1}{2}\tilde{\mathbf{V}}(\tilde{\mathbf{G}} - \tilde{\mathbf{H}}\tilde{\mathbf{G}})e^{\tilde{\mathbf{S}}_{\lambda}\frac{t}{\tau}}\mathbf{B}^{T} - \frac{1}{2}\tilde{\mathbf{V}}(\tilde{\mathbf{G}} + \tilde{\mathbf{H}}\tilde{\mathbf{G}})e^{-\tilde{\mathbf{S}}_{\lambda}\frac{t}{\tau}}\mathbf{C}^{T} + \tilde{\mathbf{V}}_{\perp}e^{\lambda_{\perp}\frac{t}{\tau}}\mathbf{D}^{T},$$
(13)

$$Z_{2}(t) = \frac{1}{2}\tilde{U}(\tilde{G} + \tilde{H}\tilde{G})e^{\tilde{S}_{\lambda}\frac{t}{\tau}}B^{T} + \frac{1}{2}\tilde{U}(\tilde{G} - \tilde{H}\tilde{G})e^{-\tilde{S}_{\lambda}\frac{t}{\tau}}C^{T} + \tilde{\mathbf{U}}_{\perp}e^{\lambda_{\perp}\frac{t}{\tau}}D^{T},$$
(14)

$$\boldsymbol{A}(t) = \mathbf{I} + \boldsymbol{B} \left(\frac{e^{2\tilde{\boldsymbol{S}}_{\lambda} \frac{t}{\tau}} - \mathbf{I}}{4\tilde{\boldsymbol{S}}_{\lambda}} \right) \boldsymbol{B}^{T} - \boldsymbol{C} \left(\frac{e^{-2\tilde{\boldsymbol{S}}_{\lambda} \frac{t}{\tau}} - \mathbf{I}}{4\tilde{\boldsymbol{S}}_{\lambda}} \right) \boldsymbol{C}^{T} + \boldsymbol{D} \left(\frac{e^{\boldsymbol{\lambda}_{\perp} \frac{t}{\tau}} - \mathbf{I}}{\boldsymbol{\lambda}_{\perp}} \right) \boldsymbol{D}^{T}.$$
(15)

and

$$\tilde{m{S}}_{\lambda} = \sqrt{\tilde{m{S}}^2 + rac{\lambda^2}{4} \mathbf{I}}, \ m{\lambda}_{\perp} = \mathrm{sgn}(N_o - N_i) rac{\lambda}{2} \mathbf{I}_{|N_o - N_i|}, \ \tilde{m{H}} = \mathrm{sgn}(\lambda) \sqrt{rac{ ilde{m{S}}_{\lambda} - ilde{m{S}}}{ ilde{m{S}}_{\lambda} + ilde{m{S}}}}, \ ilde{m{G}} = rac{1}{\sqrt{\mathbf{I} + ilde{m{H}}^2}}.$$

where **B**, **C**, **D** are initialization-dependent matrices.

From exponential to sigmoidal dynamics

Rich and lazy learning

Architecture and learning regime

[Dominé and Anguita et al. 2024]

Delayed rich regime

Exact continual learning dynamics

Impact of relative scale initializations in practice

Promotes interpretability of early layers in CNNs

Decreases the time to grokking in modular arithmetic

Today

1. Deep linear network dynamics from tabula rasa initialization

2. Nontrivial initializations: Lazy, rich, & beyond

3. Nonlinear networks & the neural race reduction

Gating: a simple view of nonlinearity

ReLU neural nonlinearity

When active, each pathway behaves like a deep linear network

Gated Deep Linear Network

Arch graph Γ : nodes V, edges E $\mathbf{y}_{V''}$

 $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

 X_{V}

Gated Deep Linear Network

Forward propagation:

$$h_{v} = g_{v} \sum_{q \in E: t(q)=v} g_{q} W_{q} h_{s(q)}$$

S(q): source node of edge q

t(q): target node of edge q

Gradient descent

Minimize
$$L_2$$
 loss

Minimize
$$L_2$$
 loss
$$\mathcal{L}(\{W\}) = \left\langle \frac{1}{2} \sum_{v \in \text{Out}(\Gamma)} \|y_v - h_v\|_2^2 \right\rangle_{x,y,g}$$

using gradient flow on the weights

$$\tau \frac{d}{dt} W_e = -\frac{\partial \mathcal{L}(\{W\})}{\partial W_e} \quad \forall e \in E$$

Gradient descent

Path notation

$$W_p = W_c W_b W_a$$
$$g_p = g_4 g_c g_3 g_b g_2 g_a g_1$$

 $\bar{t}(p,e)$: target path of e

 $\bar{s}(p,e)$: source path of e

Gradient descent

$$\tau \frac{d}{dt} W_e = \sum_{p \in \mathcal{P}(e)} W_{\bar{t}(p,e)}^T \mathcal{E}(p) W_{\bar{s}(p,e)}^T$$

 $\mathcal{P}(e)$: All paths through e

$$\mathcal{E}(p) = \Sigma^{yx}(p) - \sum_{j \in \mathcal{T}(p)} W_j \Sigma^x(j, p)$$

 $\mathcal{T}(e)$: All paths terminating at same node as p

Correlation matrices

Dynamics driven only by statistics:

$$\Sigma^{yx}(p) = \langle g_p y_{t(p)} x_{s(p)}^T \rangle_{y,x,g}$$

$$\Sigma^{x}(j,p) = \langle g_j x_{s(j)} x_{s(p)}^T g_p \rangle_{y,x,g}$$

One correlation matrix per path

Intuition

Each pathway behaves like a deep linear network

Gating controls the effective dataset for each pathway

All paths through an edge sum to determine dynamics

The XoR problem

Gated dynamics

Gated dynamics

Gated DLN on XoR

XoR Dynamics

XoR Dynamics

XoR Dynamics

Reduction and (occasionally) exact solutions

"Decoupled" initialization:

$$W_e(t) = R_{t(e)} B_e(t) R_{s(e)}^T \quad \forall e$$

Mutually diagonalizable correlations:

$$\Sigma^{yx}(p) = U_{t(p)}S(p)V_{s(p)}^{T}$$

$$\Sigma^{x}(j,p) = V_{s(j)}D(j,p)V_{s(p)}^{T}$$

Reduction:

$$\frac{d}{dt}B_e = X B_{\rho \setminus e} 4S(\rho) - X B_j D(j, \rho)^5$$

Assumptions & caveats

Reduction exact for GDLNs

- Also exact for ReLU networks under the assumptions:
 - Gates on each example match the activity set
 - No neurons switch their activity set
 - Initial weights are decoupled

 Can approximate ReLU networks with small random weights, but not always

The neural race reduction

 In a large network with many pathways, these compete to reduce the global error

- A pathway's learning speed depends on:
 - Effective dataset (larger input-output correlation faster)
 - Pathway depth (deeper generally slower)
 - Initialization (larger/imbalanced generally faster)
 - Edge sharing (more pathways through edge generally faster)

The fastest pathways can dominate the solution

Which gating structures?

Which gating structures?

Neural Race Reduction

- Each gating scheme yields a distinct effective dataset and deep linear network trajectory
- The one which learns fastest dominates the solution

The neural race: stronger input-output correlations

71

The neural race: edge sharing

Example: transition to nonlinearity

linearly separable with margin Δ for any $\Delta>0$, collapses to XoR at $\Delta=0$

Example: transition to nonlinearity

Nonlinear representations emerge before they are strictly necessary

Example: Routing network

Ex: multilingual translation

Each domain has distinctive inputs/outputs but similar underlying structural form

Dataset

Simple hierarchical dataset for each domain

Subset of trained domain pairs

M: # domains

K: # trained output domains per input domain

Dynamics of abstraction

Systematic generalization

% trained input/output domain pairs

Race dynamics favor shared structure

Initialization dependence: rich vs lazy learning

Factorization & principle of convergence

Selket, https://commons.wikimedia.org/w/index.php?curid=1679336

Multipotential representation learning

Animals can recombine their existing knowledge to exploit new opportunities

 In machine learning systems, this ability can emerge at scale (e.g., in context learning)

• What are the factors that give rise to multipotential representations?

Conclusion & outlook

 Depth introduces a hierarchy of saddle points into the loss landscape, yielding a quasi-systematic progression through stages

 Initialization determines whether these saddle points influence dynamics, yielding several learning regimes

In nonlinear networks, pathways race to explain the dataset

References

- Saxe, A. M., McClelland, J. L., & Ganguli, S. (2019). A mathematical theory of semantic development in deep neural networks. Proceedings of the National Academy of Sciences, 116(23), 11537–11546.
- Liebana Garcia et al. (2025). Dopamine encodes deep network teaching signals for individual learning trajectories. Cell.
- Braun, L., Dominé, C.C.J., Fitzgerald, J., Saxe, A.M. (2022) Exact learning dynamics of deep linear networks with prior knowledge. In *NeurIPS*.
- Dominé, C.C.J., Anguita, N., Proca, A. M., Braun, L., Kunin, D., Mediano, P. A. M., & Saxe, A. M. (2025). From lazy to rich: Exact learning dynamics in deep linear networks. In *ICLR*.
- Saxe*, A. M., Sodhani*, S., & Lewallen, S. (2022). The Neural Race Reduction: Dynamics of Abstraction in Gated Networks. In *ICML*. *Equal contribution.
- Jarvis, D., Klein, R., Rosman, B., Saxe, A.M. (2025). Make haste slowly: A theory of emergent structured mixed selectivity in feature learning ReLU networks. In *ICLR*.

Aaditya Singh Anika Lowe Basile Confavreux Clementine Domine Cris Holobetz Devon Jarvis Erin Grant Jin Lee Jirko Rubruck **Lukas Braun Nishil Patel Rodrigo Carrasco Davis** Rachel Swanson Sam Lewallen Sam Liebana Sarah Armstrong Sebastian Lee Stefano Sarao Mannelli Tyler Boyd-Meredith Verena Klar Victor Pedrosa

SCHMIDT **FUTURES**

ROYAL SOCIETY

