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Today

1. Deep linear network dynamics

2. Nontrivial initializations: Lazy, rich, & beyond

3. Nonlinear networks & the neural race reduction
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Depth complicates learning dynamics

D
e
e
p

S
ha

llo
w

0 100 200
0

0.5

1

E
rr

o
r

0 100 200

Training time

0

0.5

1

E
rr

o
r



Data

Architecture

Algorithm

Training speed

Performance

Representations

Computer Simulation

?

Credit: NYASL. Zdeborová. Understanding deep learning is also a job for physicists. Nature Physics, 2020



Surrogate models

• Tackling these questions in full generality is challenging

• Instead, we can analyze a surrogate model that is simpler but retains 
key features of the full problem

• Particularly for brain sciences, crucial to have a minimal, tractable 
model
– Conceptual clarity

– Unambiguous predictions

– Isolate contribution of depth, data statistics, nonlinearity
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Deep network

• Little hope for a complete theory with arbitrary nonlinearities

x Î RN1yÎ RND+1

. . .

h2 Î RN3

x

W 1
W 2

W D

f (W1x)f (W DhD )

f (x)

f (W 2h1)f (W D-1hD-1)
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Deep linear network

• Use a deep linear network as a starting point.

x Î RN1yÎ RND+1

. . .

h2 Î RN3

x

W 1
W 2

W D

f (W1x)f (W DhD )

f (x)

f (W 2h1)f (W D-1hD-1)
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Gradient descent
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Gradient flow dynamics:

l =1,  , D

Mean squared error loss:



A linear chain
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b(t)b(t)b(t)

D layers of weights

x=1y=2



Error surface
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S=2,    =1

b(t)b(t)b(t)

Individual layer weight b

Depth introduces a saddle point



Gradient descent dynamics
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Analytic learning trajectory
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Shallow (D=1):

Deep (D=2):

V. Deep (D         ):®¥

𝑎 𝑡 =
𝑠/𝜆

1 − 1 −
𝑠

𝜆𝑎0
𝑒−

2𝑠𝑡
𝜏



Analytic learning trajectory
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Shallow (D=1):

Deep (D=2):

V. Deep (D         ):®¥



Full networks act like several 1D chains

Shallow Deep
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ŷ x ŷ xh



Depth introduces stage-like transitions

Shallow Deep
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ŷ x ŷ xh



Training speed

• How does training speed scale with depth?

• Time difference for deep net vs shallow net is

• Deep learning speed is highly sensitive to initial conditions
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𝑡𝐷 epochs to train depth D network

b0 Initial layer singular value

s Minimum nonzero singular value

D Depth

𝑡∞ − 𝑡1 ≈ 𝑂
1

𝑠𝑏0
𝐷



Effect of initialization

• Small random weights scale exponentially

• Pretraining + fine-tuning scales linearly

• Orthogonal initialization: depth-independent
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𝑡∞ − 𝑡1 ≈ 𝑂 Τ1 𝑏0
𝐷

𝑡∞ − 𝑡1 ≈ 𝑂 Τ𝐷 𝑏0
2

𝑡∞ − 𝑡1 ≈ 𝑂 1
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Figure 2: Example singular value decomposition for a toy

dataset. Left: The learning environment is specified by an

input-output correlation matrix. This example dataset has

four items: Canary, Salmon, Oak, andRose. Thetwoanimals

share the property that they can Move, while the two plants

cannot. In addition each item hasauniqueproperty: can Fly,

can Swim, has Bark, and has Petals, respectively. Right: The

SVD decomposesS31 into input-output modes that link aset

of coherently covarying properties (output singular vectors in

thecolumns of U) to aset of coherently covarying items (in-

put singular vectors in the rowsof VT). Theoverall strength

of this link isgiven by thesingular values lying along thedi-

agonal of S. In this toy example, mode1 distinguishes plants

from animals; mode 2 birds from fish; and mode 3 flowers

from trees.

We wish to train the network to learn a particular input-

output map from a set of P training examples { xµ,yµ} ,µ =

1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training

is accomplished in an online fashion via stochastic gradient

descent; each time an example µ is presented, the weights

W32 andW21 areadjusted by asmall amount in thedirection

that minimizes thesquared error yµ−W32W21xµ 2
between

the desired feature output, and the network’s feature output.

Thisgradient descent procedure yields the learning rule

DW21 = l W32T
yµxµT −W32W21xµxµT (1)

DW32 = l yµxµT −W32W21xµxµT W21T
, (2)

for each example µ, where l is a small learning rate. We

imagine that training is divided into a sequence of learning

epochs, and in each epoch, the above rules are followed for

all P examples in random order. As long as l is sufficiently

small so that the weights change by only asmall amount per

learning epoch, we can average (1)-(2) over all P examples

and takeacontinuous timelimit to obtain themean change in

weights per learning epoch,

t
d

dt
W21 = W32T

S31−W32W21S11 (3)

t
d

dt
W32 = S31−W32W21S11 W21T

, (4)

whereS11⌘E[xxT] isan N1⇥N1 input correlation matrix,

S31⌘E[yxT] (5)

isanN3⇥N1 input-output correlation matrix, and t ⌘ P
l
. Here

t measures time in units of learning epochs; as t varies from

0 to 1, the network has seen P examples corresponding to

one learning epoch. We note that, although the network we

analyzeiscompletely linear with thesimpleinput-output map

y = W32W21x, the gradient descent learning dynamics given

in Eqns. (3)-(4) arehighly nonlinear.

Decomposing the input-output correlations Our funda-

mental goal is to understand thedynamics of learning in (3)-

(4) asafunction of theinput statisticsS11 andS31. Ingeneral,

the outcome of learning will reflect an interplay between the

perceptual correlations in theinput patterns, described byS11,

and the input-output correlations described by S31. To begin,

though, weconsider thecase of orthogonal input representa-

tions where each item is designated by a single active input

unit, as used by (Rumelhart & Todd, 1993) and (Rogers &

McClelland, 2004). In thiscase, S11 corresponds to the iden-

tity matrix. Under this scenario, the only aspect of the train-

ing examples that drives learning is the second order input-

output correlation matrix S31. Weconsider its singular value

decomposition (SVD)

S31 = U33S31V11T
=

N1

Â
a= 1

sauavaT, (6)

which will play a central role in understanding how the ex-

amples drive learning. The SVD decomposes any rectangu-

lar matrix into the product of three matrices. Here V11 is

an N1⇥N1 orthogonal matrix whose columns contain input-

analyzing singular vectors va that reflect independent modes

of variation in the input, U33 is an N3⇥N3 orthogonal ma-

trix whosecolumnscontain output-analyzing singular vectors

ua that reflect independent modes of variation in the output,

and S31 is an N3⇥N1 matrix whose only nonzero elements

are on the diagonal; these elements are the singular values

sa ,a = 1, . . . ,N1 ordered so that s1 ≥ s2 ≥ ···≥ sN1
. An ex-

ample SVD of a toy dataset is given in Fig. 2. As can be

seen, theSVD extracts coherently covarying items and prop-

erties from this dataset, with various modes picking out the

underlying hierarchy present in thetoy environment.

The temporal dynamics of learning A central result of

this work is that we have described the full time course of

learning by solving thenonlinear dynamical equations(3)-(4)

for orthogonal input representations (S11 = I), and arbitrary

input-output correlation S31. In particular, we find a class

of exact solutions (whose derivation will be presented else-

where) for W21(t) and W32(t) such that the composite map-

ping at any time t isgiven by

W32(t)W21(t) =
N2

Â
a= 1

a(t,sa ,a0
a) uavaT, (7)

where the function a(t,s,a0) governing the strength of each

input-output mode isgiven by

a(t,s,a0) =
se2st/ t

e2st/ t − 1+ s/ a0

. (8)
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Figure 2: Example singular value decomposition for a toy

dataset. Left: The learning environment is specified by an

input-output correlation matrix. This example dataset has

four items: Canary, Salmon, Oak, andRose. Thetwoanimals

share the property that they can Move, while the two plants

cannot. In addition each item hasauniqueproperty: can Fly,

can Swim, hasBark, and hasPetals, respectively. Right: The

SVD decomposesS31 into input-output modes that link aset

of coherently covarying properties(output singular vectors in

thecolumns of U) to aset of coherently covarying items (in-

put singular vectors in the rowsof VT). Theoverall strength

of this link isgiven by thesingular values lying along thedi-

agonal of S. In this toy example, mode1 distinguishes plants

from animals; mode 2 birds from fish; and mode 3 flowers

from trees.

We wish to train the network to learn a particular input-

output map from a set of P training examples { xµ,yµ} ,µ =

1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training

is accomplished in an online fashion via stochastic gradient

descent; each time an example µ is presented, the weights

W32 andW21 areadjusted by asmall amount in thedirection

that minimizes thesquared error yµ−W32W21xµ 2
between

the desired feature output, and the network’s feature output.

Thisgradient descent procedureyields the learning rule

DW21 = l W32T
yµxµT −W32W21xµxµT (1)

DW32 = l yµxµT −W32W21xµxµT W21T
, (2)

for each example µ, where l is a small learning rate. We

imagine that training is divided into a sequence of learning

epochs, and in each epoch, the above rules are followed for

all P examples in random order. As long as l is sufficiently

small so that the weights change by only asmall amount per

learning epoch, we can average (1)-(2) over all P examples

and takeacontinuous timelimit to obtain themean changein

weights per learning epoch,

t
d

dt
W21 = W32T

S31−W32W21S11 (3)

t
d

dt
W32 = S31−W32W21S11 W21T

, (4)

whereS11⌘E[xxT] isan N1⇥N1 input correlation matrix,

S31⌘E[yxT] (5)

isanN3⇥N1 input-output correlation matrix, and t ⌘ P
l
. Here

t measures time in units of learning epochs; as t varies from

0 to 1, the network has seen P examples corresponding to

one learning epoch. We note that, although the network we

analyzeiscompletely linear with thesimpleinput-output map

y = W32W21x, the gradient descent learning dynamics given

in Eqns. (3)-(4) arehighly nonlinear.

Decomposing the input-output correlations Our funda-

mental goal is to understand thedynamics of learning in (3)-

(4) asafunction of theinput statisticsS11 andS31. Ingeneral,

the outcome of learning will reflect an interplay between the

perceptual correlations in theinput patterns, described byS11,

and the input-output correlations described by S31. To begin,

though, weconsider thecase of orthogonal input representa-

tions where each item is designated by a single active input

unit, as used by (Rumelhart & Todd, 1993) and (Rogers &

McClelland, 2004). In thiscase, S11 corresponds to the iden-

tity matrix. Under this scenario, the only aspect of the train-

ing examples that drives learning is the second order input-

output correlation matrix S31. Weconsider its singular value

decomposition (SVD)

S31 = U33S31V11T
=

N1

Â
a= 1

sauavaT, (6)

which will play a central role in understanding how the ex-

amples drive learning. The SVD decomposes any rectangu-

lar matrix into the product of three matrices. Here V11 is

an N1⇥N1 orthogonal matrix whose columns contain input-

analyzing singular vectors va that reflect independent modes

of variation in the input, U33 is an N3⇥N3 orthogonal ma-

trix whosecolumnscontain output-analyzing singular vectors

ua that reflect independent modes of variation in the output,

and S31 is an N3⇥N1 matrix whose only nonzero elements

are on the diagonal; these elements are the singular values

sa,a = 1, . . . ,N1 ordered so that s1 ≥ s2 ≥ ···≥ sN1
. An ex-

ample SVD of a toy dataset is given in Fig. 2. As can be

seen, theSVD extracts coherently covarying items and prop-

erties from this dataset, with various modes picking out the

underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of

this work is that we have described the full time course of

learning by solving thenonlinear dynamical equations(3)-(4)

for orthogonal input representations (S11 = I), and arbitrary

input-output correlation S31. In particular, we find a class

of exact solutions (whose derivation will be presented else-

where) for W21(t) and W32(t) such that the composite map-

ping at any time t isgiven by

W32(t)W21(t) =
N2

Â
a= 1

a(t,sa,a0
a) uavaT, (7)

where the function a(t,s,a0) governing the strength of each

input-output mode isgiven by

a(t,s,a0) =
se2st/ t

e2st/ t − 1+ s/ a0

. (8)

Structured generative model Deep linear network

The “World”: The “Learner”:

Connecting neural nets and graphical models



Analytic link

• In the limit of many features, what matters to learning dynamics 

is SVD of correlation structure

• Can find this exactly for certain graphical models

– Partitions

– Trees

– Grids/rings

Andrew Saxe 22



Cross-cutting
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Progressive differentiation

These networks must exhibit progressive differentiation:
• Singular vectors mirror hierarchy
• Singular values decay with depth



Progressive differentiation



Animal Plant

Fish FlowerBird Tree





Depth introduces a hierarchy of saddle points
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Individual variability amidst structure
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Learning to make perceptual decisions from naïve to expert

Rafal BogaczChiara ToschiAeron Laffere Peter 

Zatka-Haas
Louisa Schilling Armin LakSam Liebana



Reward

Wheel

Screen

Left OR Right?

Full task from day 1 without any 
change over learning

Learning to make perceptual decisions from naïve to expert

Burgess*, Lak*, Steinmetz*, Zatka-Haas* et al., Cell reports, 2017



130,939 trials

Learning to make perceptual decisions from naïve to expert

LEFT RIGHT



Mice exhibit diverse learning trajectories

LEFT     RIGHT



Learning trajectories are individually diverse but systematic



A Deep RL Neural Network



Model captures behavior

Behavior Model Simulation

Theory



Dynamics pass near a hierarchy of saddle points



Saddle points arise through depth
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Shallow Deep



Today

1. Deep linear network dynamics from tabula rasa initialization

2. Nontrivial initializations: Lazy, rich, & beyond

3. Nonlinear networks & the neural race reduction
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41

and

where B, C, D are initialization-dependent matrices. 

Partitioned solution



From exponential to sigmoidal dynamics

Andrew Saxe 42



Loss NTKInput-Output map Input RSM Output RSM

Rich and lazy learning

43

λ = -50

λ = 50

λ = 0



44
[Dominé and Anguita et al. 2024]

Architecture and learning regime



45
[Dominé and Anguita et al. 2024]

Delayed rich regime
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[Braun and Dominé et al. 2022, Dominé and Anguita et al. 2024]

Exact continual learning dynamics

                

NumericalAnalytical



Promotes interpretability of 
early layers in CNNs

Decreases the time to 
grokking in modular 

arithmetic

Kunin et al. 2024 

Impact of relative scale initializations in practice 

47



Today

1. Deep linear network dynamics from tabula rasa initialization

2. Nontrivial initializations: Lazy, rich, & beyond

3. Nonlinear networks & the neural race reduction
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Gating: a simple view of nonlinearity

Andrew Saxe 49

net input

f(n) Linear regime

Off

ReLU neural nonlinearity

When active, each pathway behaves like a deep linear network

Lippl et al., 2022; Saxe et al., 2022; Li & Sompolinsky, 2022  



Gated Deep Linear Network
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Arch graph Γ: nodes 𝑉, edges 𝐸



Gated Deep Linear Network

Andrew Saxe 51

ℎ𝑣 = 𝑔𝑣 ෍

𝑞∈𝐸:𝑡 𝑞 =𝑣

𝑔𝑞𝑊𝑞ℎ𝑠(𝑞)

𝑠 𝑞 : source node of edge 𝑞
𝑡(𝑞): target node of edge 𝑞

Forward propagation:



Gradient descent
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ℒ 𝑊 =
1

2
෍

𝑣∈Out Γ

𝑦𝑣 − ℎ𝑣 2
2

𝑥,𝑦,𝑔

Minimize 𝐿2 loss 

𝜏
𝑑

𝑑𝑡
𝑊𝑒 = −

𝜕ℒ 𝑊

𝜕𝑊𝑒
 ∀𝑒 ∈ 𝐸

using gradient flow on the weights



Gradient descent

a

b

c
Path 𝑝
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𝑊𝑝 = 𝑊𝑐𝑊𝑏𝑊𝑎

Path notation

𝑔𝑝 = 𝑔4𝑔𝑐𝑔3𝑔𝑏𝑔2𝑔𝑎𝑔1

1

2

3

4

ҧ𝑡(𝑝, 𝑒)

ҧ𝑠(𝑝, 𝑒)
ҧ𝑡 𝑝, 𝑒 : target path of 𝑒

ҧ𝑠 𝑝, 𝑒 : source path of 𝑒

𝜏
𝑑

𝑑𝑡
𝑊𝑒 = ෍

𝑝∈𝒫(𝑒)

𝑊 ҧ𝑡 𝑝,𝑒
𝑇  



Gradient descent

𝜏
𝑑

𝑑𝑡
𝑊𝑒 = ෍

𝑝∈𝒫(𝑒)

𝑊 ҧ𝑡 𝑝,𝑒
𝑇 ℇ 𝑝 𝑊 ҧ𝑠 𝑝,𝑒

𝑇  

Andrew Saxe 55

𝒫(𝑒): All paths through 𝑒

ℇ 𝑝 = Σ𝑦𝑥 𝑝 − ෍

𝑗∈𝒯(𝑝)

WjΣ
𝑥(𝑗, 𝑝)

𝒯(𝑒): All paths terminating at same node as 𝑝



Correlation matrices

• Dynamics driven only by statistics:

• One correlation matrix per path
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Σ𝑦𝑥 𝑝 = 𝑔𝑝𝑦𝑡 𝑝 𝑥𝑠 𝑝
𝑇

𝑦,𝑥,𝑔

Σ𝑥 𝑗, 𝑝 = 𝑔𝑗𝑥𝑠 𝑗 𝑥𝑠 𝑝
𝑇 𝑔𝑝 𝑦,𝑥,𝑔



Intuition
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Each pathway behaves like a deep linear network

Gating controls the effective dataset for each pathway

All paths through an edge sum to determine dynamics



The XoR problem
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-1 0 1

x
1

-1

0

1
x

2 …

𝑥1 𝑥2

𝑦

Minsky & Papert, 1969; Rumelhart, Hinton & Williams, 1986



Gated dynamics
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Gated dynamics
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Gated DLN on XoR
The Neural Race Reduction: Dynamics of Abstraction in Gated Networks

of e). Overloading thenotation, wewill write Wp where p

isapath to indicate theordered product of all weights along

the path p, with the target of p on the left and the source of

p on the right. Similarly, we write gp where p is a path to

denote theproduct of the (node and edge) gating variables

along the path.

With thisnotation, thegradient flow equations can beshown

to be (full derivation in Appendix B),

⌧
d

dt
We = −

@L ({ W } )

@We

8e 2 E, (2)

=
X

p2 P (e)

W T
t̄ (p,e) E(p)W T

s̄(p,e) (3)

where the error term for path p is

E(p) = ⌃ yx (p) −
X

j 2 T ( t (p) )

Wj ⌃
x (j , p). (4)

Here the dataset statistics which drive learning are collected

in the correlation matrices

⌃ yx (p) =
D

gpyt (p) x
T
s(p)

E

y,x ,g
(5)

⌃ x (j , p) =
D

gj xs( j ) x
T
s(p) gp

E

y,x ,g
(6)

where j and p index two paths. Hence if there are N paths

through the graph from input nodes to output nodes, there

are potentially N distinct input-output correlation matrices

and N 2 distinct input correlation matrices that are relevant

to the dynamics. Remarkably, no other statistics of the

dataset are considered by the gradient descent dynamics.

Notably, these correlation matrices depend not just on the

dataset statistics (x and y), but also on thegating structure g.

Thepossiblegating structuresare limited by thearchitecture.

In this way, the architecture of the network influences its

learning dynamics.

In essence, the core simplification enabled by the GDLN

formalism is that the gating variables g appear only in these

data correlation matrices. They do not appear elsewhere

in Eqns. (3)-(4), which otherwise resemble the gradient

flow for a deep linear network (Saxe et al., 2014; 2019).

The effect of the nonlinear gating can thus be viewed as

constructing pathway-dependent dataset statistics that are

fed to deep linear subnetworks (pathways).

Asasimpleexampleof thepower of this framework relative

to deep linear networks, consider the XoR task (Fig. 3a),

a canonical nonlinear task that cannot be solved by linear

networks. By choosing the gating structures to activate a

different pathway on each example (Fig. 3b), thegated deep

linear network can solve this task (Fig. 3c blue). Crucially,

its dynamics (analytically obtained in Appendix A based

on the reduction in the following sections) closely approx-

imates the dynamics of a standard ReLU network trained

− 1 0 1
x1

− 1

0

1

x
2

0 100 200
Epochs

0.0

0.5

M
S
E

Simulations

Analytical

!"

#

$! $" $# $$

(a) (b) (c)

Figure 3. XoR solution dynamics. (a) The XoR task with positive

(red) and negative (blue) examples. Input-to-hidden weights from

ReLU simulations (magenta) reveal four functional cell types. (b)

GDLN with four paths, each active on one example. (c) Sim-

ulations of ReLU dynamics from small weights (red, 10 repeti-

tions) closely track analytical solutions in the GDLN. Parameters:

Nh = 128,⌧= 5/ 2, σ0 = .0002.

with backprop (Fig. 3c red). This result demonstrates that

thegated networksaremoreexpressive than their non-gated

counterpart, and that gated networks can provide insight

into ReLU dynamics in certain settings. We note that so

far, our analysis does not provide a mechanism to select the

gating structure. We will return to this point in Section 4.2,

which provides aperspectiveon the gating structures likely

to emerge in largenetworks.

3.1. Exact reduction from decoupled initial conditions

Our fundamental goal isto understand thedynamicsof learn-

ing asafunction of architecture and dataset statistics. In this

section, we exploit the simplified form of the gradient flow

equations to obtain an exact reduction of the dynamics. Our

reduction builds on prior work in deep linear networks, and

intuitively, showsthat the dynamics of gating networks can

be expressed succinctly in terms of effective independent

1D networks that govern the singular value dynamics of

each weight matrix in thenetwork. The reduced dynamics

can besubstantially morecompact, as for instance, aweight

matrix of sizeN ⇥M hasN M entriesbut only min(M , N )

singular values.

To accomplish this, we introduce a change of variables

based on the singular value decomposition of the relevant

dataset statistics. Suppose that the dataset correlation ma-

trices are mutually diagonalizable, such that their singular

value decompositions have the form

⌃ yx (p) = Ut (p) S(p)V T
s(p) (7)

⌃ x (j , p) = Vs( j ) D (j , p)V T
s(p) (8)

where the set of U and V matrices are orthogonal, and the

set of S and D matrices are diagonal. That is, there is a

distinct orthogonal matrix Ul for each output layer, adistinct

orthogonal matrix Vl for each input layer, and diagonal

matrices S(p), D (p) for each path through the network.

Then, following analyses in deep linear networks (Saxe

et al., 2014), we consider the following change of variables.

We rewrite the weight matrix on each edge as

We(t) = Rt (e) Be(t)RT
s(e) 8e, (9)
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𝑔𝑖 = ቊ
1 on example 𝑖

0 otherwise



XoR Dynamics

Andrew Saxe 62

-1 0 1

x
1

-1

0

1

x
2

0 50 100

Epoch

0

0.2

0.4

0.6

E
rr

o
r



XoR Dynamics

Andrew Saxe 63
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Reduction and (occasionally) exact solutions
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“Decoupled” initialization:

Mutually diagonalizable correlations:
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The Pathway RaceReduction: Dynamics of Abstraction in Gated Networks
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Figure 3. Pathway network solution dynamics. (a) The network contains M different input domains (each consisting of abank of neurons),

M different output domains, and two hidden layers. The task is to learn a mapping from each input domain to each output domain. The

gating structure gates on one input and one output pathway. The hidden pathway is always on. (b) Gated network formalism. There are

M 2 pathways through the network from input to output. All M 2 flow through the hidden weight matrix, while only M flow through each

input or output weight matrix. This fact causes the hidden layer to learn faster. (c) Small example dataset with hierarchical structure.

The task of the network is to produce the 7-dimensional output vector for each of four items. Inputs are random orthogonal vectors for

each item. (d) Each input domain is trained with K output domains (here K = 4), such that some input-output routes are never seen

in training. (e) Training loss dynamics for simulated networks from small random weights (red, 10 repetitions), simulated networks

from decoupled initial conditions (green), and theoretical prediction from Eqn. 15 (blue). The theory matches the decoupled simulations

exactly, and is agood approximation for small random weights. (f) Thesingular values of the hidden weight matrix (blue) are larger than

those in input or output matrices by a factor
p

M . Theoretical predictions match simulations well, particularly for larger singular values.

(g) Representational similarity (or kernel) matrix at thefirst hidden layer. Inputs from different domains aremapped to similar internal

representations, revealing a shared representation even for input domains that are never trained with a common output. (h) Predicted

output at the end of training. The network generalizes perfectly to input-output routes that were never seen during training. Parameters:

M = 7, K = 4, λ = .02,σ0 = .2, Nh = 64.

C). For this decoupled initialization, thedynamics are

⌧
d

dt
Be =

X

p2 P (e)

Bp\ e

2

4S(p) −
X

j 2 T ( t (p) )

B j D (j , p)

3

5

(10)

whereBp\ e = B t̄ (p,e) B s̄(p,e) is the product of all B matri-

ces on path p after removing edge e (see Appendix C).

In essence, this reduction removescompetitive interactions

between singular value modes, such that the dynamics of

theoverall network can be described by summing together

several “1D networks,” one for each singular value. Intu-

itively, this reduction showsthat learning dynamics depend

on several factors.

Input-output correlations Other things being equal, a

pathway learning from a dataset with larger input-

output singular values will learn faster. This fact is

well known from prior work on deep linear networks

(Saxeet al., 2014).

Pathway counting Other things being equal, aweight ma-

trix corresponding to an edge that participates in many

paths (such that the sum contains many terms) will

learn faster. This fact is less obvious, as it becomes

relevant only if onemovesbeyond simplefeed-forward

chains to study complex architectures and gating.

Wenow turn to examples that verify and illustrate the rich

behavior and consequences of these dynamics.

4. Applications and consequences

To fix a specific scenario with rich opportunities for gen-

eralization, weconsider a “routing” setting, asdepicted in

Fig. 3a. In this setting, a network receives inputs from M

different input domains and produces outputs across M dif-

ferent output domains. The goal is to learn to map inputs

from a specific input domain to a specific output domain,

with no negative-interference from other input-output do-

main pairs. There are thusM 2 possible tasks which can be

performed, each corresponding to mapping one of the M

input domains to oneof the M output domains.

We assume that the target input-output mapping from the

active input domain to the activeoutput domain is the same

for all pathways, and defined by a dataset with input cor-

relations hxxT i = VDV T and input-output correlations

hyxT i = USV T . For the simulations in this section, we

take thedataset to contain four examples, and the target out-

put to be a 7-dimensional feature vector with hierarchical

structure (Fig. 3c), but note that the theory is moregeneral.

To investigate the possibility of structured generalization,

we consider a setting where only a subset of input-output

Reduction:



Assumptions & caveats

• Reduction exact for GDLNs

• Also exact for ReLU networks under the assumptions:

– Gates on each example match the activity set

– No neurons switch their activity set

– Initial weights are decoupled

• Can approximate ReLU networks with small random weights, but not 

always
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The neural race reduction

• In a large network with many pathways, these compete to reduce the 
global error

• A pathway’s learning speed depends on:
– Effective dataset (larger input-output correlation faster)

– Pathway depth (deeper generally slower)

– Initialization (larger/imbalanced generally faster)

– Edge sharing (more pathways through edge generally faster)

• The fastest pathways can dominate the solution
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Which gating structures?
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Which gating structures?
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Neural Race Reduction
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• Each gating scheme yields a distinct effective dataset and deep 

linear network trajectory

• The one which learns fastest dominates the solution



The neural race: stronger input-output correlations
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The neural race: edge sharing
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Example: transition to nonlinearity
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Δ linearly separable with margin Δ for any Δ > 0, 
collapses to XoR at Δ = 0

 

𝑥1

𝑥2

𝑥3

Δ = 0 Δ = 5



Example: transition to nonlinearity
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Δswitch = 2/3

Nonlinear representations emerge before they are strictly necessary

𝑠𝑙𝑖𝑛 = Δ/2

𝑠𝑋𝑜𝑅 =
2 + Δ2

𝑃



Context-dependent Processing
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Context-dependent Processing
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Context-dependent Processing
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Context-dependent Processing
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Context-dependent processing
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Context-dependent processing
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Example: Routing network
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Ex: multilingual translation
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French

German

Spanish

French

German

Spanish

Each domain has distinctive inputs/outputs but similar underlying structural form 
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Simple hierarchical dataset for each domain

Dataset

Subset of trained domain pairs

𝑀: # domains

𝐾: # trained output domains per input domain



Dynamics of abstraction
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Epoch
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Systematic generalization

Saxe*, Sodhani*, & Lewallen, ICML 2022

% trained input/output domain pairs



Race dynamics favor shared structure
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Initialization dependence: rich vs lazy learning
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Factorization & principle of convergence
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Selket, https://commons.wikimedia.org/w/index.php?curid=1679336

What

Where

Weights

Gates

Rogers & McClelland, 2003



Multipotential representation learning

• Animals can recombine their existing knowledge to exploit new 

opportunities 

• In machine learning systems, this ability can emerge at scale 

(e.g., in context learning)

• What are the factors that give rise to multipotential 

representations?
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Conclusion & outlook

• Depth introduces a hierarchy of saddle points into the loss 
landscape, yielding a quasi-systematic progression through 
stages

• Initialization determines whether these saddle points influence 
dynamics, yielding several learning regimes

• In nonlinear networks, pathways race to explain the dataset
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