
Models of representation learning
dynamics

Andrew Saxe
Gatsby Unit & Sainsbury Wellcome Centre, UCL

Artificial
Intelligence Brain & MindNeural

Networks

Today

1. Deep linear network dynamics

2. Nontrivial initializations: Lazy, rich, & beyond

3. Nonlinear networks & the neural race reduction

Andrew Saxe 5

Depth complicates learning dynamics

D
ee

p
Sh

al
lo

w

0 100 200
0

0.5

1

Er
ro

r

0 100 200
Training time

0

0.5

1

Er
ro

r

Data

Architecture

Algorithm

Training speed

Performance

Representations

Computer Simulation

Credit: NYASL. Zdeborová. Understanding deep learning is also a job for physicists. Nature Physics, 2020

Surrogate models

• Tackling these questions in full generality is challenging

• Instead, we can analyze a surrogate model that is simpler but
retains key features of the full problem

• Particularly for brain sciences, crucial to have a minimal,
tractable model
– Conceptual clarity
– Unambiguous predictions
– Isolate contribution of depth, data statistics, nonlinearity

Andrew Saxe 8

Deep network
• Little hope for a complete theory with arbitrary

nonlinearities

x ∈ RN1y ∈ RND+1

. . .

h2 ∈ RN3
x

W 1W 2WD

f (W 1x)f (WDhD)

f (x)

f (W 2h1)f (WD−1hD−1)

Andrew Saxe 9

Deep linear network
• Use a deep linear network as a starting point.

x ∈ RN1y ∈ RND+1

. . .

h2 ∈ RN3
x

W 1W 2WD

f (W 1x)f (WDhD)

f (x)

f (W 2h1)f (WD−1hD−1)

Andrew Saxe 10

Gradient descent

Andrew Saxe 11

Gradient flow dynamics:

l =1,,D

DY

l=1

W l
(t) = UA(t)V T

=

NX

↵=1

a↵(t)u
↵v↵T (24)

⌧
d

dt
W l

=

DY

i=l+1

W i

!T "
⌃
yx �

DY

i=1

W i

!
⌃
xx

l�1Y

i=1

W i

!T

(25)

2 end scratch

This continuous time analysis supposes that we use a fixed learning rate ⌧ for networks of

di↵erent depth. To implement these networks in discrete time, however, requires scaling the

learning rate with depth; a constant learning rate will not allow the discrete iterations to

remain stable. We estimate the maximum stable learning rate by calculating the maximum

eigenvalue of the Hessian over the relevant region. This gives,

⌧ ä = (2D � 4)
�
s�� a�2

�
a

D�3
D�1 � (D � 1)�2a

2D�4
D�1 (26)

which in the interval [0, s/�] attains its maximum at the fixed point a = s/�,

⌧ ä = (D � 1)�2
⇣ s
�

⌘ 2D�4
D�1

. (27)

We set the inverse learning rate ⌧ proportional to this with proportionality constant c,
giving

⌧ =
1

c
(D � 1)�2

⇣ s
�

⌘ 2D�4
D�1

. (28)

Substituting this into the dynamics equation (??), we have the dynamics

ȧ = c��2
⇣ s
�

⌘� 2D�4
D�1 �

s�� a�2
�
a

2D�4
D�1 (29)

= c
⇣ s
�
� a
⌘✓�a

s

◆ 2D�4
D�1

(30)

We highlight three informative special cases.

A shallow network, D = 2, with no hidden layer

ȧ = c
⇣ s
�
� a
⌘

(31)

A three layer network, D = 3, the minimal example of depth with one hidden layer:

ȧ = c
⇣ s
�
� a
⌘✓�a

s

◆
. (32)

3

W1,!,WD

min yµ − Wi

i=1

D

∏
#

$
%

&

'
(xµ

2

µ

∑

Mean squared error loss:

A linear chain

Andrew Saxe 12

b(t)b(t)!b(t)

D layers of weights

x=1y=2

Individual layer strength b
0 0.5 1 1.5 2 2.5

E
rr

o
r

0

1

2

3

4

5
D = 1
D = 2
D = 3
D = 4
D = 5

Error surface

Andrew Saxe 13

S=2, =1

A theory of deep learning in deep linear networks

Andrew M. Saxe

June 25, 2015

Via the SVD change of variables, each mode decouples and the e↵ective mode strength

evolves according to gradient descent on

E(s, a,�) =
1

2⌧
(s� a�)2 (1)

where the mode index ↵ has been suppressed. Here a, the overall mode strength, is the

product of the layer mode strengths a(t) = bD�1(t)bD�2(t) · · · b1(t). The continuous time

gradient descent update on one specific bi is

⌧ ḃi = (s� a�)�
D�1Y

j=1,j 6=i

bj(t), i = 1, · · · , D � 1. (2)

The overall update to a is

⌧ ȧ =

D�1X

i=1

2

4
D�1Y

j=1,j 6=i

bj(t)

3

5 ḃi(t) (3)

=

D�1X

i=1

2

4
D�1Y

j=1,j 6=i

bj(t)

3

5 (s� a�)�
D�1Y

j=1,j 6=i

bj(t) (4)

= (s� a�)�
D�1X

i=1

2

4
D�1Y

j=1,j 6=i

bj(t)

3

5
2

. (5)

We now add the assumption that the bi’s are all equal, bi(t) = b(t), 8i. Thus a(t) =

b(t)D�1
. This is reasonable for the limit of small random weights, but is not always the

case–a variety of interesting phenomena arise for the case where these are unequal (e.g. see

my perceptual learning work). In this “balanced” case we have the major simplification,

⌧ ȧ = (s� a�)�
D�1X

i=1

⇥
b(t)D�2

⇤2
(6)

= (D � 1) (s� a�)�b(t)2D�4
(7)

= (D � 1)
�
s�� a�2

�
a

2D�4
D�1 . (8)

1

b(t)b(t)!b(t)
Individual layer weight b

Depth introduces a saddle point

Gradient descent dynamics

Andrew Saxe 14

S=2, =1

A theory of deep learning in deep linear networks

Andrew M. Saxe

June 25, 2015

Via the SVD change of variables, each mode decouples and the e↵ective mode strength

evolves according to gradient descent on

E(s, a,�) =
1

2⌧
(s� a�)2 (1)

where the mode index ↵ has been suppressed. Here a, the overall mode strength, is the

product of the layer mode strengths a(t) = bD�1(t)bD�2(t) · · · b1(t). The continuous time

gradient descent update on one specific bi is

⌧ ḃi = (s� a�)�
D�1Y

j=1,j 6=i

bj(t), i = 1, · · · , D � 1. (2)

The overall update to a is

⌧ ȧ =

D�1X

i=1

2

4
D�1Y

j=1,j 6=i

bj(t)

3

5 ḃi(t) (3)

=

D�1X

i=1

2

4
D�1Y

j=1,j 6=i

bj(t)

3

5 (s� a�)�
D�1Y

j=1,j 6=i

bj(t) (4)

= (s� a�)�
D�1X

i=1

2

4
D�1Y

j=1,j 6=i

bj(t)

3

5
2

. (5)

We now add the assumption that the bi’s are all equal, bi(t) = b(t), 8i. Thus a(t) =

b(t)D�1
. This is reasonable for the limit of small random weights, but is not always the

case–a variety of interesting phenomena arise for the case where these are unequal (e.g. see

my perceptual learning work). In this “balanced” case we have the major simplification,

⌧ ȧ = (s� a�)�
D�1X

i=1

⇥
b(t)D�2

⇤2
(6)

= (D � 1) (s� a�)�b(t)2D�4
(7)

= (D � 1)
�
s�� a�2

�
a

2D�4
D�1 . (8)

1

Individual layer weight b

To
ta

l i
np

ut
-o

ut
pu

t w
ei

gh
t

Analytic learning trajectory

Andrew Saxe 15

1 scratch

⌧ ḃi = (s� a�)�
DY

j=1,j 6=i

bj(t), i = 1, · · · , D. (9)

⌧ ȧ = D
�
s�� a�2

�
a2�2/D. (10)

⌧ ȧ =

⇣ s

�
� a

⌘✓
�a

s

◆2�2/D

(11)

a(t) =
s

�

⇣
1� e�t/⌧

⌘
+ a0e

�t/⌧ , (12)

a(t) =
s

�

⇣
1� e�t/⌧

⌘
+ a0e

�t⌧
(13)

a(t) =
s/�

1 +W
h⇣

s
�a0

� 1

⌘
e

s
�a0

�1�t/⌧
i (14)

2 end scratch

This continuous time analysis supposes that we use a fixed learning rate ⌧ for networks of

di↵erent depth. To implement these networks in discrete time, however, requires scaling the

learning rate with depth; a constant learning rate will not allow the discrete iterations to

remain stable. We estimate the maximum stable learning rate by calculating the maximum

eigenvalue of the Hessian over the relevant region. This gives,

⌧ ä = (2D � 4)
�
s�� a�2

�
a

D�3
D�1 � (D � 1)�2a

2D�4
D�1 (15)

which in the interval [0, s/�] attains its maximum at the fixed point a = s/�,

⌧ ä = (D � 1)�2
⇣ s

�

⌘ 2D�4
D�1

. (16)

We set the inverse learning rate ⌧ proportional to this with proportionality constant c,
giving

⌧ =
1

c
(D � 1)�2

⇣ s

�

⌘ 2D�4
D�1

. (17)

Substituting this into the dynamics equation (8), we have the dynamics

ȧ = c��2
⇣ s

�

⌘� 2D�4
D�1 �

s�� a�2
�
a

2D�4
D�1 (18)

= c
⇣ s

�
� a

⌘✓
�a

s

◆ 2D�4
D�1

(19)

2

1 scratch

⌧ ḃi = (s� a�)�
DY

j=1,j 6=i

bj(t), i = 1, · · · , D. (9)

⌧ ȧ = D
�
s�� a�2

�
a2�2/D. (10)

⌧ ȧ =

⇣ s

�
� a

⌘✓
�a

s

◆2�2/D

(11)

a(t) =
s

�

⇣
1� e�t/⌧

⌘
+ a0e

�t/⌧ , (12)

a(t) =
s

�

⇣
1� e�t/⌧

⌘
+ a0e

�t⌧
(13)

a(t) =
s/�

1 +W
h⇣

s
�a0

� 1

⌘
e

s
�a0

�1�t/⌧
i (14)

2 end scratch

This continuous time analysis supposes that we use a fixed learning rate ⌧ for networks of

di↵erent depth. To implement these networks in discrete time, however, requires scaling the

learning rate with depth; a constant learning rate will not allow the discrete iterations to

remain stable. We estimate the maximum stable learning rate by calculating the maximum

eigenvalue of the Hessian over the relevant region. This gives,

⌧ ä = (2D � 4)
�
s�� a�2

�
a

D�3
D�1 � (D � 1)�2a

2D�4
D�1 (15)

which in the interval [0, s/�] attains its maximum at the fixed point a = s/�,

⌧ ä = (D � 1)�2
⇣ s

�

⌘ 2D�4
D�1

. (16)

We set the inverse learning rate ⌧ proportional to this with proportionality constant c,
giving

⌧ =
1

c
(D � 1)�2

⇣ s

�

⌘ 2D�4
D�1

. (17)

Substituting this into the dynamics equation (8), we have the dynamics

ȧ = c��2
⇣ s

�

⌘� 2D�4
D�1 �

s�� a�2
�
a

2D�4
D�1 (18)

= c
⇣ s

�
� a

⌘✓
�a

s

◆ 2D�4
D�1

(19)

2

Shallow (D=1):

Deep (D=2):

V. Deep (D):→∞

𝑎 𝑡 =
𝑠/𝜆

1 − 1 − 𝑠
𝜆𝑎!

𝑒"
#$%
&

Analytic learning trajectory

Andrew Saxe 16

Shallow (D=1):

Deep (D=2):

V. Deep (D):→∞

0 5 10 15

a
(t

)

0
0.5
1

0 5 10 15
a
(t

)
0

0.5
1

Epochs
0 5 10 15

a
(t

)

0
0.5
1

Full networks act like several 1D chains
Shallow Deep

Andrew Saxe 17

ŷ x ŷ xh

We show the extraction of such abstract domain structure is pos-
sible provided learning is gradual, with a small learning rate �. In
this regime, many examples are seen before the weights appreciably
change, so learning is driven by the statistical structure of the domain.
We imagine training is divided into a sequence of learning epochs. In
each epoch the above rule is followed for all P examples in random
order. Then averaging [1] over all P examples and taking a continu-
ous time limit gives the mean change in weights per learning epoch,

⌧
d

dt
W1 = W2T �

⌃yx �W2W1⌃x�
, [2]

⌧
d

dt
W2 =

�
⌃yx �W2W1⌃x�W1T

, [3]

where ⌃x ⌘ E[xxT] is an N1 ⇥ N1 input correlation matrix,
⌃yx ⌘ E[yxT] is an N3 ⇥N1 input-output correlation matrix, and
⌧ ⌘ P

� (see SI for detailed derivation). Here, t measures time in units
of learning epochs; as t varies from 0 to 1, the network has seen P

examples corresponding to one learning epoch. These equations re-
veal that learning dynamics in even in our simple linear network can
be highly complex: the second order statistics of inputs and outputs
drives synaptic weight changes through coupled nonlinear differen-
tial equations with up to cubic interactions in the weights.

Explicit solutions from tabula rasa. These nonlinear dynamics are
difficult to solve for arbitrary initial conditions on synaptic weights.
However, we are interested in a particular limit: learning from a state
of essentially no knowledge, which we model as small random synap-
tic weights. To further ease the analysis, we shall assume that the
influence of perceptual correlations is minimal (⌃x ⇡ I). Our fun-
damental goal, then, is to understand the dynamics of learning in
(2)-(3) as a function of the input-output correlation matrix ⌃yx. The

0 2 4 6 8 0 2 4 6 8
t (Epochs) t (Epochs)

C D

a i
(t)

b i
(t)

Exact
Simulated

a3,4

a2

a1

b3,4

b2
b1s1

s2
s3,4

s1
s2
s3,4

A

−1

−0.5

0

0.5

1

Student Version of MATLAB

Items

Roots

Grow
Move

Fly
Swim
Leaves
Petals

=

Pr
op

er
tie

s

Pr
op

er
tie

s

Modes

× ×

1 2 3 4

Modes

1 2 3 4

M
od

es

M
od

es

s1
s2
s3
s4

R

G
M

F
S

P

L

1

2

3
4

1

2

3
4

!Σ#$ % &'

Items

−1

−0.5

0

0.5

1

Student Version of MATLAB

Modes

B

Roots

Grow
Move

Fly
Swim
Leaves
Petals

=

Pr
op

er
tie

s

Pr
op

er
tie

s × ×

1 2 3 4

Modes

1 2 3 4

M
od

es

M
od

es

a1
a2
a3
a4

R

G
M

F
S

P

L

1

2

3
4

1

2

3
4

!Σ(#$(*) ,(*) &'

Items

Items

Fig. 3. (A) Singular value decomposition (SVD) of input-output correlations. As-
sociations between items and their properties are decomposed into modes. Each
mode links a set of coherently covarying properties (a column of U) with a set
of coherently covarying items (a row of VT). The strength of the mode’s covari-
ation is encoded by the singular value of the mode (diagonal element of S). (B)
Network input-output map, analyzed via the SVD. The effective singular values
(diagonal elements of A(t)) evolve over time during learning. (C) Time-varying
trajectories of the deep network’s effective singular values ai(t). Black dashed
line marks the point in time depicted in panel B. (D) Time-varying trajectories of
a shallow network’s effective singular values bi(t).

learning dynamics is closely related to terms in the singular value
decomposition (SVD) of ⌃yx (Fig. 3A),

⌃yx = USVT =
N1X

↵=1

s↵u
↵v↵T

, [4]

which decomposes any matrix into the product of three matrices.
Each of these matrices has a distinct semantic interpretation.

For example, the ↵’th column v↵ of the N1⇥N1 orthogonal ma-
trix V can be thought of as an object analyzer vector; it determines
the position of item i along an important semantic dimension ↵ in
the training set through the component v↵

i . To illustrate this inter-
pretation concretely, we consider a simple example dataset with four
items (Canary, Salmon, Oak, and Rose) and five properties (Fig. 3).
The two animals share the property can Move, while the two plants
do not. Also each item has a unique property: can Fly, can Swim, has
Bark, and has Petals. For this dataset, while the first row of VT is a
uniform mode, the second row, or the second object analyzer vector
v2, determines where items sit on an animal-plant dimension, and
hence has positive values for the Canary and Salmon and negative
values for the plants. The other dimensions identified by the SVD are
a bird-fish dimension, and a flower-tree dimension.

The corresponding ↵’th column u↵ of the N3 ⇥ N3 orthogo-
nal matrix U can be thought of as a feature synthesizer vector for
semantic distinction ↵. It’s components u↵

m indicate the extent to
which feature m is present or absent in distinction ↵. Hence the
feature synthesizer u2 associated with the animal-plant semantic di-
mension has positive values for Move and negative values for Roots,
as animals typically can move and do not have roots, while plants
behave oppositely. Finally the N3 ⇥N1 singular value matrix S has
nonzero elements s↵,↵ = 1, . . . , N1 only on the diagonal, ordered
so that s1 � s2 � · · · � sN1 . s↵ captures the overall strength of
the association between the ↵’th input and output dimensions. The
large singular value for the animal-plant dimension reflects the fact
that this one dimension explains more of the training set than the
finer-scale dimensions like bird-fish and flower-tree.

Given the SVD of the training set’s input-output correlation ma-
trix in (4), we can now explicitly describe the network’s learning dy-
namics. The network’s overall input-output map at time t is a time-
dependent version of this SVD decomposition (Fig. 3B); it shares the
object analyzer and feature synthesizer matrices of the SVD of ⌃yx,
but replaces the singular value matrix S with an effective singular
value matrix A(t),

W2(t)W1(t) = UA(t)VT =
N2X

↵=1

a↵(t)u
↵v↵T

, [5]

where the trajectory of each effective singular value a↵(t) obeys

a↵(t) =
s↵e

2s↵t/⌧

e2s↵t/⌧ � 1 + s↵/a
0
↵
. [6]

Eqn. 6 describes a sigmoidal trajectory that begins at some initial
value a

0
↵ at time t = 0 and rises to s↵ as t ! 1, as plotted in

Fig. 3C. This solution is applicable when the network begins as a
tabula rasa, or an undifferentiated state with little initial knowledge,
corresponding small random initial weights (see SI for derivation),
and it provides an accurate description of the learning dynamics in
this regime, as confirmed by simulation in Fig. 3C.

This solution also gives insight into how the internal represen-
tations in the hidden layer of the deep network evolve. An exact
solution for W2 and W1 is given by

W1(t) = Q
p

A(t)VT
, W2(t) = U

p
A(t)Q�1

, [7]

where Q is an arbitrary N2 ⇥N2 invertible matrix (SI Appendix). If
initial weights are small, then the matrix Q will be close to orthogo-
nal, i.e., Q ⇡ R where RTR = I. Thus the internal representations

Footline Author PNAS Issue Date Volume Issue Number 3

We show the extraction of such abstract domain structure is pos-
sible provided learning is gradual, with a small learning rate �. In
this regime, many examples are seen before the weights appreciably
change, so learning is driven by the statistical structure of the domain.
We imagine training is divided into a sequence of learning epochs. In
each epoch the above rule is followed for all P examples in random
order. Then averaging [1] over all P examples and taking a continu-
ous time limit gives the mean change in weights per learning epoch,

⌧
d

dt
W1 = W2T �

⌃yx �W2W1⌃x�
, [2]

⌧
d

dt
W2 =

�
⌃yx �W2W1⌃x�W1T

, [3]

where ⌃x ⌘ E[xxT] is an N1 ⇥ N1 input correlation matrix,
⌃yx ⌘ E[yxT] is an N3 ⇥N1 input-output correlation matrix, and
⌧ ⌘ P

� (see SI for detailed derivation). Here, t measures time in units
of learning epochs; as t varies from 0 to 1, the network has seen P

examples corresponding to one learning epoch. These equations re-
veal that learning dynamics in even in our simple linear network can
be highly complex: the second order statistics of inputs and outputs
drives synaptic weight changes through coupled nonlinear differen-
tial equations with up to cubic interactions in the weights.

Explicit solutions from tabula rasa. These nonlinear dynamics are
difficult to solve for arbitrary initial conditions on synaptic weights.
However, we are interested in a particular limit: learning from a state
of essentially no knowledge, which we model as small random synap-
tic weights. To further ease the analysis, we shall assume that the
influence of perceptual correlations is minimal (⌃x ⇡ I). Our fun-
damental goal, then, is to understand the dynamics of learning in
(2)-(3) as a function of the input-output correlation matrix ⌃yx. The

0 2 4 6 8 0 2 4 6 8
t (Epochs) t (Epochs)

C D

a i
(t)

b i
(t)

Exact
Simulated

a3,4

a2

a1

b3,4

b2
b1s1

s2
s3,4

s1
s2
s3,4

A

−1

−0.5

0

0.5

1

Student Version of MATLAB

Items

Roots

Grow
Move

Fly
Swim
Leaves
Petals

=

Pr
op

er
tie

s

Pr
op

er
tie

s

Modes

× ×

1 2 3 4

Modes

1 2 3 4

M
od

es

M
od

es

s1
s2
s3
s4

R

G
M

F
S

P

L

1

2

3
4

1

2

3
4

!Σ#$ % &'

Items

−1

−0.5

0

0.5

1

Student Version of MATLAB

Modes

B

Roots

Grow
Move

Fly
Swim
Leaves
Petals

=

Pr
op

er
tie

s

Pr
op

er
tie

s × ×

1 2 3 4

Modes

1 2 3 4

M
od

es

M
od

es

a1
a2
a3
a4

R

G
M

F
S

P

L

1

2

3
4

1

2

3
4

!Σ(#$(*) ,(*) &'

Items

Items

Fig. 3. (A) Singular value decomposition (SVD) of input-output correlations. As-
sociations between items and their properties are decomposed into modes. Each
mode links a set of coherently covarying properties (a column of U) with a set
of coherently covarying items (a row of VT). The strength of the mode’s covari-
ation is encoded by the singular value of the mode (diagonal element of S). (B)
Network input-output map, analyzed via the SVD. The effective singular values
(diagonal elements of A(t)) evolve over time during learning. (C) Time-varying
trajectories of the deep network’s effective singular values ai(t). Black dashed
line marks the point in time depicted in panel B. (D) Time-varying trajectories of
a shallow network’s effective singular values bi(t).

learning dynamics is closely related to terms in the singular value
decomposition (SVD) of ⌃yx (Fig. 3A),

⌃yx = USVT =
N1X

↵=1

s↵u
↵v↵T

, [4]

which decomposes any matrix into the product of three matrices.
Each of these matrices has a distinct semantic interpretation.

For example, the ↵’th column v↵ of the N1⇥N1 orthogonal ma-
trix V can be thought of as an object analyzer vector; it determines
the position of item i along an important semantic dimension ↵ in
the training set through the component v↵

i . To illustrate this inter-
pretation concretely, we consider a simple example dataset with four
items (Canary, Salmon, Oak, and Rose) and five properties (Fig. 3).
The two animals share the property can Move, while the two plants
do not. Also each item has a unique property: can Fly, can Swim, has
Bark, and has Petals. For this dataset, while the first row of VT is a
uniform mode, the second row, or the second object analyzer vector
v2, determines where items sit on an animal-plant dimension, and
hence has positive values for the Canary and Salmon and negative
values for the plants. The other dimensions identified by the SVD are
a bird-fish dimension, and a flower-tree dimension.

The corresponding ↵’th column u↵ of the N3 ⇥ N3 orthogo-
nal matrix U can be thought of as a feature synthesizer vector for
semantic distinction ↵. It’s components u↵

m indicate the extent to
which feature m is present or absent in distinction ↵. Hence the
feature synthesizer u2 associated with the animal-plant semantic di-
mension has positive values for Move and negative values for Roots,
as animals typically can move and do not have roots, while plants
behave oppositely. Finally the N3 ⇥N1 singular value matrix S has
nonzero elements s↵,↵ = 1, . . . , N1 only on the diagonal, ordered
so that s1 � s2 � · · · � sN1 . s↵ captures the overall strength of
the association between the ↵’th input and output dimensions. The
large singular value for the animal-plant dimension reflects the fact
that this one dimension explains more of the training set than the
finer-scale dimensions like bird-fish and flower-tree.

Given the SVD of the training set’s input-output correlation ma-
trix in (4), we can now explicitly describe the network’s learning dy-
namics. The network’s overall input-output map at time t is a time-
dependent version of this SVD decomposition (Fig. 3B); it shares the
object analyzer and feature synthesizer matrices of the SVD of ⌃yx,
but replaces the singular value matrix S with an effective singular
value matrix A(t),

W2(t)W1(t) = UA(t)VT =
N2X

↵=1

a↵(t)u
↵v↵T

, [5]

where the trajectory of each effective singular value a↵(t) obeys

a↵(t) =
s↵e

2s↵t/⌧

e2s↵t/⌧ � 1 + s↵/a
0
↵
. [6]

Eqn. 6 describes a sigmoidal trajectory that begins at some initial
value a

0
↵ at time t = 0 and rises to s↵ as t ! 1, as plotted in

Fig. 3C. This solution is applicable when the network begins as a
tabula rasa, or an undifferentiated state with little initial knowledge,
corresponding small random initial weights (see SI for derivation),
and it provides an accurate description of the learning dynamics in
this regime, as confirmed by simulation in Fig. 3C.

This solution also gives insight into how the internal represen-
tations in the hidden layer of the deep network evolve. An exact
solution for W2 and W1 is given by

W1(t) = Q
p

A(t)VT
, W2(t) = U

p
A(t)Q�1

, [7]

where Q is an arbitrary N2 ⇥N2 invertible matrix (SI Appendix). If
initial weights are small, then the matrix Q will be close to orthogo-
nal, i.e., Q ⇡ R where RTR = I. Thus the internal representations

Footline Author PNAS Issue Date Volume Issue Number 3

Depth introduces stage-like transitions
Shallow Deep

Andrew Saxe 18

ŷ x ŷ xh

We show the extraction of such abstract domain structure is pos-
sible provided learning is gradual, with a small learning rate �. In
this regime, many examples are seen before the weights appreciably
change, so learning is driven by the statistical structure of the domain.
We imagine training is divided into a sequence of learning epochs. In
each epoch the above rule is followed for all P examples in random
order. Then averaging [1] over all P examples and taking a continu-
ous time limit gives the mean change in weights per learning epoch,

⌧
d

dt
W1 = W2T �

⌃yx �W2W1⌃x�
, [2]

⌧
d

dt
W2 =

�
⌃yx �W2W1⌃x�W1T

, [3]

where ⌃x ⌘ E[xxT] is an N1 ⇥ N1 input correlation matrix,
⌃yx ⌘ E[yxT] is an N3 ⇥N1 input-output correlation matrix, and
⌧ ⌘ P

� (see SI for detailed derivation). Here, t measures time in units
of learning epochs; as t varies from 0 to 1, the network has seen P

examples corresponding to one learning epoch. These equations re-
veal that learning dynamics in even in our simple linear network can
be highly complex: the second order statistics of inputs and outputs
drives synaptic weight changes through coupled nonlinear differen-
tial equations with up to cubic interactions in the weights.

Explicit solutions from tabula rasa. These nonlinear dynamics are
difficult to solve for arbitrary initial conditions on synaptic weights.
However, we are interested in a particular limit: learning from a state
of essentially no knowledge, which we model as small random synap-
tic weights. To further ease the analysis, we shall assume that the
influence of perceptual correlations is minimal (⌃x ⇡ I). Our fun-
damental goal, then, is to understand the dynamics of learning in
(2)-(3) as a function of the input-output correlation matrix ⌃yx. The

0 2 4 6 8 0 2 4 6 8
t (Epochs) t (Epochs)

C D

a i
(t)

b i
(t)

Exact
Simulated

a3,4

a2

a1

b3,4

b2
b1s1

s2
s3,4

s1
s2
s3,4

A

−1

−0.5

0

0.5

1

Student Version of MATLAB

Items

Roots

Grow
Move

Fly
Swim
Leaves
Petals

=

Pr
op

er
tie

s

Pr
op

er
tie

s

Modes

× ×

1 2 3 4

Modes

1 2 3 4

M
od

es

M
od

es

s1
s2
s3
s4

R

G
M

F
S

P

L

1

2

3
4

1

2

3
4

!Σ#$ % &'

Items

−1

−0.5

0

0.5

1

Student Version of MATLAB

Modes

B

Roots

Grow
Move

Fly
Swim
Leaves
Petals

=

Pr
op

er
tie

s

Pr
op

er
tie

s × ×

1 2 3 4

Modes

1 2 3 4

M
od

es

M
od

es

a1
a2
a3
a4

R

G
M

F
S

P

L

1

2

3
4

1

2

3
4

!Σ(#$(*) ,(*) &'

Items

Items

Fig. 3. (A) Singular value decomposition (SVD) of input-output correlations. As-
sociations between items and their properties are decomposed into modes. Each
mode links a set of coherently covarying properties (a column of U) with a set
of coherently covarying items (a row of VT). The strength of the mode’s covari-
ation is encoded by the singular value of the mode (diagonal element of S). (B)
Network input-output map, analyzed via the SVD. The effective singular values
(diagonal elements of A(t)) evolve over time during learning. (C) Time-varying
trajectories of the deep network’s effective singular values ai(t). Black dashed
line marks the point in time depicted in panel B. (D) Time-varying trajectories of
a shallow network’s effective singular values bi(t).

learning dynamics is closely related to terms in the singular value
decomposition (SVD) of ⌃yx (Fig. 3A),

⌃yx = USVT =
N1X

↵=1

s↵u
↵v↵T

, [4]

which decomposes any matrix into the product of three matrices.
Each of these matrices has a distinct semantic interpretation.

For example, the ↵’th column v↵ of the N1⇥N1 orthogonal ma-
trix V can be thought of as an object analyzer vector; it determines
the position of item i along an important semantic dimension ↵ in
the training set through the component v↵

i . To illustrate this inter-
pretation concretely, we consider a simple example dataset with four
items (Canary, Salmon, Oak, and Rose) and five properties (Fig. 3).
The two animals share the property can Move, while the two plants
do not. Also each item has a unique property: can Fly, can Swim, has
Bark, and has Petals. For this dataset, while the first row of VT is a
uniform mode, the second row, or the second object analyzer vector
v2, determines where items sit on an animal-plant dimension, and
hence has positive values for the Canary and Salmon and negative
values for the plants. The other dimensions identified by the SVD are
a bird-fish dimension, and a flower-tree dimension.

The corresponding ↵’th column u↵ of the N3 ⇥ N3 orthogo-
nal matrix U can be thought of as a feature synthesizer vector for
semantic distinction ↵. It’s components u↵

m indicate the extent to
which feature m is present or absent in distinction ↵. Hence the
feature synthesizer u2 associated with the animal-plant semantic di-
mension has positive values for Move and negative values for Roots,
as animals typically can move and do not have roots, while plants
behave oppositely. Finally the N3 ⇥N1 singular value matrix S has
nonzero elements s↵,↵ = 1, . . . , N1 only on the diagonal, ordered
so that s1 � s2 � · · · � sN1 . s↵ captures the overall strength of
the association between the ↵’th input and output dimensions. The
large singular value for the animal-plant dimension reflects the fact
that this one dimension explains more of the training set than the
finer-scale dimensions like bird-fish and flower-tree.

Given the SVD of the training set’s input-output correlation ma-
trix in (4), we can now explicitly describe the network’s learning dy-
namics. The network’s overall input-output map at time t is a time-
dependent version of this SVD decomposition (Fig. 3B); it shares the
object analyzer and feature synthesizer matrices of the SVD of ⌃yx,
but replaces the singular value matrix S with an effective singular
value matrix A(t),

W2(t)W1(t) = UA(t)VT =
N2X

↵=1

a↵(t)u
↵v↵T

, [5]

where the trajectory of each effective singular value a↵(t) obeys

a↵(t) =
s↵e

2s↵t/⌧

e2s↵t/⌧ � 1 + s↵/a
0
↵
. [6]

Eqn. 6 describes a sigmoidal trajectory that begins at some initial
value a

0
↵ at time t = 0 and rises to s↵ as t ! 1, as plotted in

Fig. 3C. This solution is applicable when the network begins as a
tabula rasa, or an undifferentiated state with little initial knowledge,
corresponding small random initial weights (see SI for derivation),
and it provides an accurate description of the learning dynamics in
this regime, as confirmed by simulation in Fig. 3C.

This solution also gives insight into how the internal represen-
tations in the hidden layer of the deep network evolve. An exact
solution for W2 and W1 is given by

W1(t) = Q
p

A(t)VT
, W2(t) = U

p
A(t)Q�1

, [7]

where Q is an arbitrary N2 ⇥N2 invertible matrix (SI Appendix). If
initial weights are small, then the matrix Q will be close to orthogo-
nal, i.e., Q ⇡ R where RTR = I. Thus the internal representations

Footline Author PNAS Issue Date Volume Issue Number 3

We show the extraction of such abstract domain structure is pos-
sible provided learning is gradual, with a small learning rate �. In
this regime, many examples are seen before the weights appreciably
change, so learning is driven by the statistical structure of the domain.
We imagine training is divided into a sequence of learning epochs. In
each epoch the above rule is followed for all P examples in random
order. Then averaging [1] over all P examples and taking a continu-
ous time limit gives the mean change in weights per learning epoch,

⌧
d

dt
W1 = W2T �

⌃yx �W2W1⌃x�
, [2]

⌧
d

dt
W2 =

�
⌃yx �W2W1⌃x�W1T

, [3]

where ⌃x ⌘ E[xxT] is an N1 ⇥ N1 input correlation matrix,
⌃yx ⌘ E[yxT] is an N3 ⇥N1 input-output correlation matrix, and
⌧ ⌘ P

� (see SI for detailed derivation). Here, t measures time in units
of learning epochs; as t varies from 0 to 1, the network has seen P

examples corresponding to one learning epoch. These equations re-
veal that learning dynamics in even in our simple linear network can
be highly complex: the second order statistics of inputs and outputs
drives synaptic weight changes through coupled nonlinear differen-
tial equations with up to cubic interactions in the weights.

Explicit solutions from tabula rasa. These nonlinear dynamics are
difficult to solve for arbitrary initial conditions on synaptic weights.
However, we are interested in a particular limit: learning from a state
of essentially no knowledge, which we model as small random synap-
tic weights. To further ease the analysis, we shall assume that the
influence of perceptual correlations is minimal (⌃x ⇡ I). Our fun-
damental goal, then, is to understand the dynamics of learning in
(2)-(3) as a function of the input-output correlation matrix ⌃yx. The

0 2 4 6 8 0 2 4 6 8
t (Epochs) t (Epochs)

C D

a i
(t)

b i
(t)

Exact
Simulated

a3,4

a2

a1

b3,4

b2
b1s1

s2
s3,4

s1
s2
s3,4

A

−1

−0.5

0

0.5

1

Student Version of MATLAB

Items

Roots

Grow
Move

Fly
Swim
Leaves
Petals

=

Pr
op

er
tie

s

Pr
op

er
tie

s

Modes

× ×

1 2 3 4

Modes

1 2 3 4

M
od

es

M
od

es

s1
s2
s3
s4

R

G
M

F
S

P

L

1

2

3
4

1

2

3
4

!Σ#$ % &'

Items

−1

−0.5

0

0.5

1

Student Version of MATLAB

Modes

B

Roots

Grow
Move

Fly
Swim
Leaves
Petals

=

Pr
op

er
tie

s

Pr
op

er
tie

s × ×

1 2 3 4

Modes

1 2 3 4

M
od

es

M
od

es

a1
a2
a3
a4

R

G
M

F
S

P

L

1

2

3
4

1

2

3
4

!Σ(#$(*) ,(*) &'

Items

Items

Fig. 3. (A) Singular value decomposition (SVD) of input-output correlations. As-
sociations between items and their properties are decomposed into modes. Each
mode links a set of coherently covarying properties (a column of U) with a set
of coherently covarying items (a row of VT). The strength of the mode’s covari-
ation is encoded by the singular value of the mode (diagonal element of S). (B)
Network input-output map, analyzed via the SVD. The effective singular values
(diagonal elements of A(t)) evolve over time during learning. (C) Time-varying
trajectories of the deep network’s effective singular values ai(t). Black dashed
line marks the point in time depicted in panel B. (D) Time-varying trajectories of
a shallow network’s effective singular values bi(t).

learning dynamics is closely related to terms in the singular value
decomposition (SVD) of ⌃yx (Fig. 3A),

⌃yx = USVT =
N1X

↵=1

s↵u
↵v↵T

, [4]

which decomposes any matrix into the product of three matrices.
Each of these matrices has a distinct semantic interpretation.

For example, the ↵’th column v↵ of the N1⇥N1 orthogonal ma-
trix V can be thought of as an object analyzer vector; it determines
the position of item i along an important semantic dimension ↵ in
the training set through the component v↵

i . To illustrate this inter-
pretation concretely, we consider a simple example dataset with four
items (Canary, Salmon, Oak, and Rose) and five properties (Fig. 3).
The two animals share the property can Move, while the two plants
do not. Also each item has a unique property: can Fly, can Swim, has
Bark, and has Petals. For this dataset, while the first row of VT is a
uniform mode, the second row, or the second object analyzer vector
v2, determines where items sit on an animal-plant dimension, and
hence has positive values for the Canary and Salmon and negative
values for the plants. The other dimensions identified by the SVD are
a bird-fish dimension, and a flower-tree dimension.

The corresponding ↵’th column u↵ of the N3 ⇥ N3 orthogo-
nal matrix U can be thought of as a feature synthesizer vector for
semantic distinction ↵. It’s components u↵

m indicate the extent to
which feature m is present or absent in distinction ↵. Hence the
feature synthesizer u2 associated with the animal-plant semantic di-
mension has positive values for Move and negative values for Roots,
as animals typically can move and do not have roots, while plants
behave oppositely. Finally the N3 ⇥N1 singular value matrix S has
nonzero elements s↵,↵ = 1, . . . , N1 only on the diagonal, ordered
so that s1 � s2 � · · · � sN1 . s↵ captures the overall strength of
the association between the ↵’th input and output dimensions. The
large singular value for the animal-plant dimension reflects the fact
that this one dimension explains more of the training set than the
finer-scale dimensions like bird-fish and flower-tree.

Given the SVD of the training set’s input-output correlation ma-
trix in (4), we can now explicitly describe the network’s learning dy-
namics. The network’s overall input-output map at time t is a time-
dependent version of this SVD decomposition (Fig. 3B); it shares the
object analyzer and feature synthesizer matrices of the SVD of ⌃yx,
but replaces the singular value matrix S with an effective singular
value matrix A(t),

W2(t)W1(t) = UA(t)VT =
N2X

↵=1

a↵(t)u
↵v↵T

, [5]

where the trajectory of each effective singular value a↵(t) obeys

a↵(t) =
s↵e

2s↵t/⌧

e2s↵t/⌧ � 1 + s↵/a
0
↵
. [6]

Eqn. 6 describes a sigmoidal trajectory that begins at some initial
value a

0
↵ at time t = 0 and rises to s↵ as t ! 1, as plotted in

Fig. 3C. This solution is applicable when the network begins as a
tabula rasa, or an undifferentiated state with little initial knowledge,
corresponding small random initial weights (see SI for derivation),
and it provides an accurate description of the learning dynamics in
this regime, as confirmed by simulation in Fig. 3C.

This solution also gives insight into how the internal represen-
tations in the hidden layer of the deep network evolve. An exact
solution for W2 and W1 is given by

W1(t) = Q
p

A(t)VT
, W2(t) = U

p
A(t)Q�1

, [7]

where Q is an arbitrary N2 ⇥N2 invertible matrix (SI Appendix). If
initial weights are small, then the matrix Q will be close to orthogo-
nal, i.e., Q ⇡ R where RTR = I. Thus the internal representations

Footline Author PNAS Issue Date Volume Issue Number 3

Training speed
• How does training speed scale with depth?

• Time difference for deep net vs shallow net is

• Deep learning speed is highly sensitive to initial conditions
Andrew Saxe 19

𝑡' epochs to train depth D network

b0 Initial layer singular value

s Minimum nonzero singular value

D Depth

𝑡! − 𝑡" ≈ 𝑂
1
𝑠𝑏#$

Effect of initialization

• Small random weights scale exponentially

• Pretraining + fine-tuning scales linearly

• Orthogonal initialization: depth-independent

Andrew Saxe 20

𝑡* − 𝑡+ ≈ 𝑂 ⁄1 𝑏,-

𝑡* − 𝑡+ ≈ 𝑂 ⁄𝐷 𝑏,.

𝑡* − 𝑡+ ≈ 𝑂 1

…

…

W 21W 32

x ∈ RN1h ∈ RN2y ∈ RN3

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Structured generative model Deep linear network
The “World”: The “Learner”:

Connecting neural nets and graphical models

Analytic link

• In the limit of many features, what matters to learning
dynamics is SVD of correlation structure

• Can find this exactly for certain graphical models
– Partitions
– Trees
– Grids/rings

Andrew Saxe 22

Cross-cutting

Fo
rm

Ite
m

C
ov

ar
ia

nc
e

M
at

rix
In

pu
t-a

na
ly

zin
g

Si
ng

ul
ar

 V
ec

to
rs

Cluster Chain/RingTree Ordering

M
DS

Sc
al

in
g

Learning diverse structures

Andrew Saxe 23

Progressive differentiation

These networks must exhibit progressive differentiation:
• Singular vectors mirror hierarchy
• Singular values decay with depth

are specified up to an arbitrary rotation R. Factoring out the rotation,
the hidden representation of item i is

h
↵
i =

p
a↵(t)v↵

i . [8]

Thus internal representations develop over time by projecting inputs
onto more and more input-output modes as they are learned.

The shallow network has a solution of analogous form, Ws(t) =Pmin(N1,N3)
↵=1 b↵(t)u

↵v↵T
, but now each singular value evolves as

b↵(t) = s↵

⇣
1� e

�t/⌧
⌘
+ b

0
↵e

�t/⌧
. [9]

In contrast to the deep network’s sigmoidal trajectory, Eqn. 9 de-
scribes a simple exponential approach from the initial value b0↵ to s↵,
as plotted in Fig. 3D. Hence depth fundamentally changes the dynam-
ics of learning, yielding several important consequences below.

Rapid stage like transitions due to depth. We first compare the
time-course of learning in deep versus shallow networks as revealed
in Eqns. (6) and (9). For the deep network, beginning from a small
initial condition a

0
↵ = ✏, each mode’s effective singular value a↵(t)

rises to within ✏ of its final value s↵ in time

t(s↵, ✏) =
⌧

s↵
ln

s↵

✏
[10]

in the limit ✏ ! 0 (SI Appendix). This is O(1/s↵) up to a logarith-
mic factor. Hence modes with stronger explanatory power, as quanti-
fied by the singular value, are learned more quickly. Moreover, when
starting from small initial weights, the sigmoidal transition from no
knowledge of the mode to perfect knowledge can be arbitrarily sharp.
Indeed the ratio of time spent in the sigmoidal transition regime to the
ratio of time spent before making the transition can go to infinity as
the initial weights go to zero (see SI Appendix). Thus rapid stage like
transitions in learning can be prevalent even in deep linear networks.

By contrast, the timescale of learning for the shallow network is

t(s↵, ✏) = ⌧ ln
s↵

✏
, [11]

which is O(1) up to a logarithmic factor. Hence in a shallow net-
work, the timescale of learning a mode depends only weakly on its
associated singular value. Essentially all modes are learned at the
same time, with an exponential rather than sigmoidal learning curve.

Progressive differentiation of hierarchical structure. We are now
almost in a position to explain how we analytically derived the result
in Fig. 2B. The only remaining ingredient is a mathematical descrip-
tion of the training data. Indeed the numerical results in Fig. 2A arose
from a toy-training set, making it difficult to understand which as-
pects the data were essential for the hierarchical learning dynamics.
Here, we introduce a probabilistic generative model for hierarchi-
cally structured data, in order to move beyond toy datasets to extract
general principles of how statistical structure impacts learning.

0

1

2

3

0

1

2

3

0

1

2

3

Salmon
Sunfish

Canary
Robin

Daisy
Rose
Oak
Pine

Animal

Plant

Fish

Bird

Tree

Flower

Si
ng

ul
ar

 V
al

ue

Items Semantic distinctions Semantic distinctions
Ite

m
s

A B C D

Fig. 4. Hierarchy and the SVD. (A) A domain of eight items with an underlying
hierarchical structure. (B) The correlation matrix of the features of the items. (C)
Singular value decomposition of the correlations reveals semantic distinctions
that mirror the hierarchical taxonomy. This is a general property of the SVD of
hierarchical data. (D) The singular values of each semantic distinction reveal its
strength in the dataset, and control when it is learned.

Our generative model (described in detail in SI Appendix) mim-
ics the process of evolution to create a dataset with explicit hierar-
chical structure. In our model, each feature diffuses down an evo-
lutionary tree (Fig. 4A), with a small probability of mutating along
each branch. The items lie at the leaves of the tree, and the gener-
ative process creates a hierarchical similarity matrix between items
such that items with a more recent common ancestor on the tree are
more similar to each other (Fig. 4B). We analytically computed the
SVD of this hierarchical dataset and we found that the object ana-
lyzer vectors, which can be viewed as functions on the leaves of the
tree in Fig. 4C respect the hierarchical branches of the tree, with the
larger (smaller) singular values corresponding to broader (finer) dis-
tinctions. Moreover, in Fig. 4A we have artificially labelled the leaves
and branches of the evolutionary tree with organisms and categories
that might reflect a natural realization of this evolutionary process.

Now, inserting the singular values in Fig. 4D (and SI Appendix)
into the deep learning dynamics in Eq. 6 to obtain the time-dependent
singular values a↵(t), and then inserting these along with the object
analyzers vectors v↵ in Fig. 4C into Eq. 8, we obtain a complete
analytic derivation of the evolution of internal representations over
developmental time in the deep network. An MDS visualization of
these evolving hidden representation then yields Fig. 2B, which qual-
itatively recapitulates the much more complex network and dataset
that led to Fig. 2A. In essence, this analysis completes a mathemat-
ical proof that the striking progressive differentiation of hierarchi-
cal observed in Fig. 2 is an inevitable consequence of deep learning
dynamics, even in linear networks, when exposed to hierarchically
structured data. The essential intuition is that dimensions of feature
variation across items corresponding to broader (finer) hierarchical
distinctions have stronger (weaker) statistical structure, as quantified
by the singular values of the training data, and hence these dimen-
sions are learned faster (slower), leading to waves of differentiation
in a deep, but not a shallow network. Such a pattern of hierarchi-
cal differentiation has long been argued to apply to the conceptual
development of infants and children [1, 5–7] (but see [[cite**]]).

Illusory Correlations. Another intriguing aspect of semantic devel-
opment is that children sometimes attest to false beliefs (i.e. worms
have bones [2]) that could not have been learned through direct ex-
perience. These errors challenge simple associationist accounts of
semantic development that would predict a steady, monotonic accu-
mulation of information about individual properties [2, 16, 17, 36].
Yet as shown in Fig. 5, the network’s knowledge of individual prop-
erties exhibits complex, non-monotonic trajectories over the course
of learning. The overall prediction for a property is a sum of contri-
butions from each mode, where the specific contribution of mode ↵

to an individual feature m for item i is a↵(t)u
↵
mv↵

i . In the example
of Fig. 5A, the first two modes make a positive contribution while the
third makes a negative one, yielding the inverted U-shaped trajectory.

0 5 10 15
-0.5

0

0.5

0 5 10 15
-0.5

0

0.5
A B

Ac
tiv
at
io
n

Time	(Epochs) Time	(Epochs)

Feature
Modes

Fig. 5. Illusory correlations during learning. (A) Predicted value (blue) of feature
“Can Fly” for item “Salmon” over the course of learning in a deep network (dataset
as in Fig. 3). The contributions from each input-output mode are shown in red.
(B) The predicted value and modes for the same feature in a shallow network.

4 www.pnas.org — — Footline Author

Progressive differentiation

Animal Plant

Fish FlowerBird Tree

Depth introduces a hierarchy of saddle points

Andrew Saxe 28

Individual variability amidst structure

Andrew Saxe 29

Learning to make perceptual decisions from naïve to expert

Rafal BogaczChiara ToschiAeron Laffere Peter
Zatka-Haas

Louisa Schilling Armin LakSam Liebana

Reward

Wheel

Screen

Left OR Right?

Full task from day 1 without any
change over learning

Learning to make perceptual decisions from naïve to expert

Burgess*, Lak*, Steinmetz*, Zatka-Haas* et al., Cell reports, 2017

130,939 trials

Learning to make perceptual decisions from naïve to expert

LEFT RIGHT

Mice exhibit diverse learning trajectories

LEFT RIGHT

Learning trajectories are individually diverse but systematic

A Deep RL Neural Network

Model captures behavior
Behavior Model Simulation

Theory

Dynamics pass near a hierarchy of saddle points

Saddle points arise through depth

Andrew Saxe 39

Shallow Deep

Today

1. Deep linear network dynamics from tabula rasa initialization

2. Nontrivial initializations: Lazy, rich, & beyond

3. Nonlinear networks & the neural race reduction

Andrew Saxe 40

41

and

where B, C, D are initialization-dependent matrices.

Partitioned solution

From exponential to sigmoidal dynamics

Andrew Saxe 42

Loss NTKInput-Output map Input RSM Output RSM

Rich and lazy learning

43

λ = -50

λ = 50

λ = 0

44
[Dominé and Anguita et al. 2024]

Architecture and learning regime

45
[Dominé and Anguita et al. 2024]

Delayed rich regime

46
[Braun and Dominé et al. 2022, Dominé and Anguita et al. 2024]

Exact continual learning dynamics

NumericalAnalytical

Promotes interpretability of
early layers in CNNs

Decreases the time to
grokking in modular

arithmetic

Kunin et al. 2024

Impact of relative scale initializations in practice

47

Today

1. Deep linear network dynamics from tabula rasa initialization

2. Nontrivial initializations: Lazy, rich, & beyond

3. Nonlinear networks & the neural race reduction

Andrew Saxe 48

Gating: a simple view of nonlinearity

Andrew Saxe 49

net input

f(n) Linear regime

Off

ReLU neural nonlinearity

When active, each pathway behaves like a deep linear network

Lippl et al., 2022; Saxe et al., 2022; Li & Sompolinsky, 2022

Gated Deep Linear Network

Andrew Saxe 50

Arch graph Γ: nodes 𝑉, edges 𝐸

We

hv
We

hv

v’
xv’

yv’’ yv’’

v’
xv’

yv’’ yv’’

v’
xv’

yv’’ yv’’

Gated Deep Linear Network

Andrew Saxe 51

gq

gv

ℎ! = 𝑔! '
"∈$:& " '!

𝑔"𝑊"ℎ((")

𝑠 𝑞 : source node of edge 𝑞
𝑡(𝑞): target node of edge 𝑞

Forward propagation:

Gradient descent

Andrew Saxe 53

ℒ 𝑊 =
1
2

-
/∈123 4

𝑦/ − ℎ/ .
.

5,7,8

Minimize	𝐿/ loss

𝜏
𝑑
𝑑𝑡
𝑊9 = −

𝜕ℒ 𝑊
𝜕𝑊9

	 ∀𝑒 ∈ 𝐸

using gradient flow on the weights

We

hv

Gradient descent

a

b

c
Path 𝑝

Andrew Saxe 54

𝑊+ = 𝑊,𝑊-𝑊.

Path notation

𝑔+ = 𝑔/𝑔,𝑔0𝑔-𝑔1𝑔.𝑔2

1

2

3

4

̅𝑡(𝑝, 𝑒)

𝑠̅(𝑝, 𝑒)
̅𝑡 𝑝, 𝑒 : target path of 𝑒

𝑠̅ 𝑝, 𝑒 : source path of 𝑒

-

Gradient descent

𝜏
𝑑
𝑑𝑡
𝑊9 = -

:∈𝒫(9)

𝑊 ̅? :,9
@ ℇ 𝑝 𝑊 ̅A :,9

@ 	

Andrew Saxe 55

𝒫(𝑒): All paths through 𝑒

ℇ 𝑝 = Σ75 𝑝 − -
B∈𝒯(:)

WDΣ5(𝑗, 𝑝)

𝒯(𝑒): All paths terminating at same node as 𝑝

Correlation matrices

• Dynamics driven only by statistics:

• One correlation matrix per path

Andrew Saxe 56

Σ75 𝑝 = 𝑔:𝑦? : 𝑥A :
@

7,5,8

Σ5 𝑗, 𝑝 = 𝑔B𝑥A B 𝑥A :
@ 𝑔: 7,5,8

Intuition

Andrew Saxe 57

We

hv

Each pathway behaves like a deep linear network

Gating controls the effective dataset for each
pathway

All paths through an edge sum to determine
dynamics

The XoR problem

Andrew Saxe 58

-1 0 1
x1

-1

0

1
x 2

…

𝑥6 𝑥/

𝑦

Minsky & Papert, 1969; Rumelhart, Hinton & Williams, 1986

Gated dynamics

Andrew Saxe 59

-1 0 1
x1

-1

0

1
x 2

…

𝑥6 𝑥/

𝑦

Gated dynamics

Andrew Saxe 60

-1 0 1
x1

-1

0

1
x 2

…

𝑥6 𝑥/

𝑦

Gated DLN on XoR
The Neural Race Reduction: Dynamics of Abstraction in Gated Networks

of e). Overloading the notation, we will write Wp where p
is a path to indicate the ordered product of all weights along
the path p, with the target of p on the left and the source of
p on the right. Similarly, we write gp where p is a path to
denote the product of the (node and edge) gating variables
along the path.

With this notation, the gradient flow equations can be shown
to be (full derivation in Appendix B),

⌧
d

dt
We = �@L({W})

@We
8e 2 E, (2)

=
X

p2P(e)

WT
t̄(p,e)E(p)W

T
s̄(p,e) (3)

where the error term for path p is

E(p) = ⌃yx(p) �
X

j2T (t(p))

Wj⌃
x(j, p). (4)

Here the dataset statistics which drive learning are collected
in the correlation matrices

⌃yx(p) =
D
gpyt(p)x

T
s(p)

E

y,x,g
(5)

⌃x(j, p) =
D
gjxs(j)x

T
s(p)gp

E

y,x,g
(6)

where j and p index two paths. Hence if there are N paths
through the graph from input nodes to output nodes, there
are potentially N distinct input-output correlation matrices
and N2 distinct input correlation matrices that are relevant
to the dynamics. Remarkably, no other statistics of the
dataset are considered by the gradient descent dynamics.

Notably, these correlation matrices depend not just on the
dataset statistics (x and y), but also on the gating structure g.
The possible gating structures are limited by the architecture.
In this way, the architecture of the network influences its
learning dynamics.

In essence, the core simplification enabled by the GDLN
formalism is that the gating variables g appear only in these
data correlation matrices. They do not appear elsewhere
in Eqns. (3)-(4), which otherwise resemble the gradient
flow for a deep linear network (Saxe et al., 2014; 2019).
The effect of the nonlinear gating can thus be viewed as
constructing pathway-dependent dataset statistics that are
fed to deep linear subnetworks (pathways).

As a simple example of the power of this framework relative
to deep linear networks, consider the XoR task (Fig. 3a),
a canonical nonlinear task that cannot be solved by linear
networks. By choosing the gating structures to activate a
different pathway on each example (Fig. 3b), the gated deep
linear network can solve this task (Fig. 3c blue). Crucially,
its dynamics (analytically obtained in Appendix A based
on the reduction in the following sections) closely approx-
imates the dynamics of a standard ReLU network trained

�1 0 1
x1

�1

0

1

x
2

0 100 200
Epochs

0.0

0.5

M
SE

Simulations

Analytical

!"

#

$! $" $# $$

(a) (b) (c)

Figure 3. XoR solution dynamics. (a) The XoR task with positive
(red) and negative (blue) examples. Input-to-hidden weights from
ReLU simulations (magenta) reveal four functional cell types. (b)
GDLN with four paths, each active on one example. (c) Sim-
ulations of ReLU dynamics from small weights (red, 10 repeti-
tions) closely track analytical solutions in the GDLN. Parameters:
Nh = 128, ⌧ = 5/2,�0 = .0002.

with backprop (Fig. 3c red). This result demonstrates that
the gated networks are more expressive than their non-gated
counterpart, and that gated networks can provide insight
into ReLU dynamics in certain settings. We note that so
far, our analysis does not provide a mechanism to select the
gating structure. We will return to this point in Section 4.2,
which provides a perspective on the gating structures likely
to emerge in large networks.

3.1. Exact reduction from decoupled initial conditions

Our fundamental goal is to understand the dynamics of learn-
ing as a function of architecture and dataset statistics. In this
section, we exploit the simplified form of the gradient flow
equations to obtain an exact reduction of the dynamics. Our
reduction builds on prior work in deep linear networks, and
intuitively, shows that the dynamics of gating networks can
be expressed succinctly in terms of effective independent
1D networks that govern the singular value dynamics of
each weight matrix in the network. The reduced dynamics
can be substantially more compact, as for instance, a weight
matrix of size N ⇥M has NM entries but only min(M,N)
singular values.

To accomplish this, we introduce a change of variables
based on the singular value decomposition of the relevant
dataset statistics. Suppose that the dataset correlation ma-
trices are mutually diagonalizable, such that their singular
value decompositions have the form

⌃yx(p) = Ut(p)S(p)V
T
s(p) (7)

⌃x(j, p) = Vs(j)D(j, p)V T
s(p) (8)

where the set of U and V matrices are orthogonal, and the
set of S and D matrices are diagonal. That is, there is a
distinct orthogonal matrix Ul for each output layer, a distinct
orthogonal matrix Vl for each input layer, and diagonal
matrices S(p), D(p) for each path through the network.

Then, following analyses in deep linear networks (Saxe
et al., 2014), we consider the following change of variables.
We rewrite the weight matrix on each edge as

We(t) = Rt(e)Be(t)R
T
s(e) 8e, (9)

Andrew Saxe 61

𝑔% = *1	on	example	𝑖
0	otherwise

XoR Dynamics

Andrew Saxe 62

-1 0 1
x1

-1

0

1
x 2

0 50 100
Epoch

0

0.2

0.4

0.6

Er
ro
r

XoR Dynamics

Andrew Saxe 63

XoR Dynamics

Andrew Saxe 64

-1 0 1
x1

-1

0

1
x 2

0 50 100
Epoch

0

0.2

0.4

0.6

Er
ro
r

Sim
Theory

Reduction and (occasionally) exact solutions

Andrew Saxe 65

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

The Pathway Race Reduction: Dynamics of Abstraction in Gated Networks

of e). Overloading the notation, we will write Wp where p
is a path to indicate the ordered product of all weights along
the path p, with the target of p on the left and the source of
p on the right. Similarly we write gp where p is a path to
denote the product of the (node and edge) gating variables
along the path.

With this notation, the gradient flow equations can be shown
to be (full derivation in Appendix C),

⌧
d

dt
We = �@L({W})

@We
8e 2 E, (2)

=
X

p2P(e)

WT
t̄(p,e)E(p)W

T
s̄(p,e) (3)

where the error term for path p is

E(p) = ⌃yx(p)�
X

j2T (t(p))

Wj⌃
x(j, p). (4)

Here the dataset statistics which drive learning are collected
in the correlation matrices

⌃yx(p) =
D
gpyt(p)x

T
s(p)

E

y,x,g
(5)

⌃x(j, p) =
D
gjxs(j)x

T
s(p)gp

E

y,x,g
(6)

where j and p index two paths. Hence if there are N paths
through the graph from input nodes to output nodes, there
are potentially N distinct input-output correlation matrices
and N2 distinct input correlation matrices that are relevant
to the dynamics. Remarkably, no other statistics of the
dataset are considered by the gradient descent dynamics.

Notably, these correlation matrices depend not just on the
dataset statistics (x and y), but also on the gating structure g.
The possible gating structures are limited by the architecture.
In this way, the architecture of the network influences its
learning dynamics.

In essence, the core simplification enabled by the GDLN
formalism is that the gating variables g appear only in these
data correlation matrices. They do not appear elsewhere
in Eqns. (3)-(4), which otherwise resemble the gradient
flow for a deep linear network (Saxe et al., 2014; 2019).
The effect of the nonlinear gating can thus be viewed as
constructing pathway-dependent dataset statistics that are
fed to deep linear subnetworks (pathways).

As a simple example of the power of this framework rel-
ative to deep linear networks, consider a nonlinear con-
textual classification problem. The network receives
two-dimensional inputs x 2 R2 where each component
xi, i = 1, 2 is drawn from a uniform distribution between -1
and 1. The task of the network is to classify stimuli based
either on the first or second input component. That is, the
target output is y = xc in context c 2 1, 2, and each context
appears with probability 1/2. In this simple scenario (a vari-

ant of the XoR task), the same input must be treated in two
different ways depending on context, and nonlinearity is re-
quired for solving it correctly. In Appendix B, we show that
a gated linear network can solve this task, while a non-gated
linear network fails. This result demonstrates that the gated
networks are more expressive than their non-gated counter-
part. We note that so far, our analysis does not provide a
mechanism to select the gating structure. We will return to
this point in Section 4.2, which provides a perspective on
the gating structures likely to emerge in large networks.

3.1. Exact reduction from decoupled initial conditions

Our fundamental goal is to understand the dynamics of learn-
ing as a function of architecture and dataset statistics. In this
section, we exploit the simplified form of the gradient flow
equations to obtain an exact reduction of the dynamics. Our
reduction builds on prior work in deep linear networks, and
intuitively, shows that the dynamics of gating networks can
be expressed succinctly in terms of effective independent
1D networks that govern the singular value dynamics of
each weight matrix in the network. The reduced dynamics
can be substantially more compact, as for instance, a weight
matrix of size N ⇥M has NM entries but only min(M,N)
singular values.

To accomplish this, we introduce a change of variables
based on the singular value decomposition of the relevant
dataset statistics. Suppose that the dataset correlation ma-
trices are mutually diagonalizable, such that their singular
value decompositions have the form

⌃yx(p) = Ut(p)S(p)V
T
s(p) (7)

⌃x(j, p) = Vs(j)D(j, p)V T
s(p) (8)

where the set of U and V matrices are orthogonal, and the
set of S and D matrices are diagonal. That is, there is a
distinct orthogonal matrix Ul for each output layer, a distinct
orthogonal matrix Vl for each input layer, and diagonal
matrices S(p), D(p) for each path through the network.

Then, following analyses in deep linear networks (Saxe
et al., 2014), we consider the following change of variables.
We rewrite the weight matrix on each edge as

We(t) = Rt(e)Be(t)R
T
s(e) 8e, (9)

where the matrices Be(t) are the new dynamical variables,
and the matrix Rv associated to each node v in the graph
satisfies RT

v Rv = I . Further, for output nodes v, we require
Rv = Uv, the output singular vectors in the diagonaliz-
ability assumption. Similarly, for input nodes, we require
Rv = Vv .

Inserting (7)-(9) into (3)-(4) shows that the dynamics for
Be decouple: if all Be(0) are initially diagonal, they will
remain so under the dynamics (full derivation in Appendix

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

The Pathway Race Reduction: Dynamics of Abstraction in Gated Networks

of e). Overloading the notation, we will write Wp where p
is a path to indicate the ordered product of all weights along
the path p, with the target of p on the left and the source of
p on the right. Similarly we write gp where p is a path to
denote the product of the (node and edge) gating variables
along the path.

With this notation, the gradient flow equations can be shown
to be (full derivation in Appendix C),

⌧
d

dt
We = �@L({W})

@We
8e 2 E, (2)

=
X

p2P(e)

WT
t̄(p,e)E(p)W

T
s̄(p,e) (3)

where the error term for path p is

E(p) = ⌃yx(p)�
X

j2T (t(p))

Wj⌃
x(j, p). (4)

Here the dataset statistics which drive learning are collected
in the correlation matrices

⌃yx(p) =
D
gpyt(p)x

T
s(p)

E

y,x,g
(5)

⌃x(j, p) =
D
gjxs(j)x

T
s(p)gp

E

y,x,g
(6)

where j and p index two paths. Hence if there are N paths
through the graph from input nodes to output nodes, there
are potentially N distinct input-output correlation matrices
and N2 distinct input correlation matrices that are relevant
to the dynamics. Remarkably, no other statistics of the
dataset are considered by the gradient descent dynamics.

Notably, these correlation matrices depend not just on the
dataset statistics (x and y), but also on the gating structure g.
The possible gating structures are limited by the architecture.
In this way, the architecture of the network influences its
learning dynamics.

In essence, the core simplification enabled by the GDLN
formalism is that the gating variables g appear only in these
data correlation matrices. They do not appear elsewhere
in Eqns. (3)-(4), which otherwise resemble the gradient
flow for a deep linear network (Saxe et al., 2014; 2019).
The effect of the nonlinear gating can thus be viewed as
constructing pathway-dependent dataset statistics that are
fed to deep linear subnetworks (pathways).

As a simple example of the power of this framework rel-
ative to deep linear networks, consider a nonlinear con-
textual classification problem. The network receives
two-dimensional inputs x 2 R2 where each component
xi, i = 1, 2 is drawn from a uniform distribution between -1
and 1. The task of the network is to classify stimuli based
either on the first or second input component. That is, the
target output is y = xc in context c 2 1, 2, and each context
appears with probability 1/2. In this simple scenario (a vari-

ant of the XoR task), the same input must be treated in two
different ways depending on context, and nonlinearity is re-
quired for solving it correctly. In Appendix B, we show that
a gated linear network can solve this task, while a non-gated
linear network fails. This result demonstrates that the gated
networks are more expressive than their non-gated counter-
part. We note that so far, our analysis does not provide a
mechanism to select the gating structure. We will return to
this point in Section 4.2, which provides a perspective on
the gating structures likely to emerge in large networks.

3.1. Exact reduction from decoupled initial conditions

Our fundamental goal is to understand the dynamics of learn-
ing as a function of architecture and dataset statistics. In this
section, we exploit the simplified form of the gradient flow
equations to obtain an exact reduction of the dynamics. Our
reduction builds on prior work in deep linear networks, and
intuitively, shows that the dynamics of gating networks can
be expressed succinctly in terms of effective independent
1D networks that govern the singular value dynamics of
each weight matrix in the network. The reduced dynamics
can be substantially more compact, as for instance, a weight
matrix of size N ⇥M has NM entries but only min(M,N)
singular values.

To accomplish this, we introduce a change of variables
based on the singular value decomposition of the relevant
dataset statistics. Suppose that the dataset correlation ma-
trices are mutually diagonalizable, such that their singular
value decompositions have the form

⌃yx(p) = Ut(p)S(p)V
T
s(p) (7)

⌃x(j, p) = Vs(j)D(j, p)V T
s(p) (8)

where the set of U and V matrices are orthogonal, and the
set of S and D matrices are diagonal. That is, there is a
distinct orthogonal matrix Ul for each output layer, a distinct
orthogonal matrix Vl for each input layer, and diagonal
matrices S(p), D(p) for each path through the network.

Then, following analyses in deep linear networks (Saxe
et al., 2014), we consider the following change of variables.
We rewrite the weight matrix on each edge as

We(t) = Rt(e)Be(t)R
T
s(e) 8e, (9)

where the matrices Be(t) are the new dynamical variables,
and the matrix Rv associated to each node v in the graph
satisfies RT

v Rv = I . Further, for output nodes v, we require
Rv = Uv, the output singular vectors in the diagonaliz-
ability assumption. Similarly, for input nodes, we require
Rv = Vv .

Inserting (7)-(9) into (3)-(4) shows that the dynamics for
Be decouple: if all Be(0) are initially diagonal, they will
remain so under the dynamics (full derivation in Appendix

“Decoupled” initialization:

Mutually diagonalizable correlations:

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

The Pathway Race Reduction: Dynamics of Abstraction in Gated Networks

Figure 3. Pathway network solution dynamics. (a) The network contains M different input domains (each consisting of a bank of neurons),
M different output domains, and two hidden layers. The task is to learn a mapping from each input domain to each output domain. The
gating structure gates on one input and one output pathway. The hidden pathway is always on. (b) Gated network formalism. There are
M2 pathways through the network from input to output. All M2 flow through the hidden weight matrix, while only M flow through each
input or output weight matrix. This fact causes the hidden layer to learn faster. (c) Small example dataset with hierarchical structure.
The task of the network is to produce the 7-dimensional output vector for each of four items. Inputs are random orthogonal vectors for
each item. (d) Each input domain is trained with K output domains (here K = 4), such that some input-output routes are never seen
in training. (e) Training loss dynamics for simulated networks from small random weights (red, 10 repetitions), simulated networks
from decoupled initial conditions (green), and theoretical prediction from Eqn. 15 (blue). The theory matches the decoupled simulations
exactly, and is a good approximation for small random weights. (f) The singular values of the hidden weight matrix (blue) are larger than
those in input or output matrices by a factor

p
M . Theoretical predictions match simulations well, particularly for larger singular values.

(g) Representational similarity (or kernel) matrix at the first hidden layer. Inputs from different domains are mapped to similar internal
representations, revealing a shared representation even for input domains that are never trained with a common output. (h) Predicted
output at the end of training. The network generalizes perfectly to input-output routes that were never seen during training. Parameters:
M = 7,K = 4,� = .02,�0 = .2, Nh = 64.

C). For this decoupled initialization, the dynamics are

⌧
d

dt
Be =

X

p2P(e)

Bp\e

2

4S(p)�
X

j2T (t(p))

BjD(j, p)

3

5

(10)
where Bp\e = Bt̄(p,e)Bs̄(p,e) is the product of all B matri-
ces on path p after removing edge e (see Appendix C).

In essence, this reduction removes competitive interactions
between singular value modes, such that the dynamics of
the overall network can be described by summing together
several “1D networks,” one for each singular value. Intu-
itively, this reduction shows that learning dynamics depend
on several factors.

Input-output correlations Other things being equal, a
pathway learning from a dataset with larger input-
output singular values will learn faster. This fact is
well known from prior work on deep linear networks
(Saxe et al., 2014).

Pathway counting Other things being equal, a weight ma-
trix corresponding to an edge that participates in many
paths (such that the sum contains many terms) will
learn faster. This fact is less obvious, as it becomes
relevant only if one moves beyond simple feed-forward
chains to study complex architectures and gating.

We now turn to examples that verify and illustrate the rich
behavior and consequences of these dynamics.

4. Applications and consequences
To fix a specific scenario with rich opportunities for gen-
eralization, we consider a “routing” setting, as depicted in
Fig. 3a. In this setting, a network receives inputs from M
different input domains and produces outputs across M dif-
ferent output domains. The goal is to learn to map inputs
from a specific input domain to a specific output domain,
with no negative-interference from other input-output do-
main pairs. There are thus M2 possible tasks which can be
performed, each corresponding to mapping one of the M
input domains to one of the M output domains.

We assume that the target input-output mapping from the
active input domain to the active output domain is the same
for all pathways, and defined by a dataset with input cor-
relations hxxT i = V DV T and input-output correlations
hyxT i = USV T . For the simulations in this section, we
take the dataset to contain four examples, and the target out-
put to be a 7-dimensional feature vector with hierarchical
structure (Fig. 3c), but note that the theory is more general.

To investigate the possibility of structured generalization,
we consider a setting where only a subset of input-output

Reduction:

Assumptions & caveats

• Reduction exact for GDLNs

• Also exact for ReLU networks under the assumptions:
– Gates on each example match the activity set
– No neurons switch their activity set
– Initial weights are decoupled

• Can approximate ReLU networks with small random weights,
but not always

Andrew Saxe 66

The neural race reduction

• In a large network with many pathways, these compete to
reduce the global error

• A pathway’s learning speed depends on:
– Effective dataset (larger input-output correlation faster)
– Pathway depth (deeper generally slower)
– Initialization (larger/imbalanced generally faster)
– Edge sharing (more pathways through edge generally faster)

• The fastest pathways can dominate the solution

Andrew Saxe 67

Which gating structures?

Andrew Saxe 68

-1 0 1
x1

-1

0

1

x 2

0 50 100
Epoch

0

0.2

0.4

0.6

Er
ro
r

-1 0 1
x1

-1

0

1

x 2

0 50 100
Epoch

0

0.2

0.4

0.6

Er
ro
r

Which gating structures?

Andrew Saxe 69

-1 0 1
x1

-1

0

1

x 2

0 50 100
Epoch

0

0.2

0.4

0.6

Er
ro
r

-1 0 1
x1

-1

0

1

x 2

0 50 100
Epoch

0

0.2

0.4

0.6

Er
ro
r

Neural Race Reduction

Andrew Saxe 70

-1 0 1
x1

-1

0

1

x 2

0 50 100
Epoch

0

0.2

0.4

0.6

Er
ro
r

-1 0 1
x1

-1

0

1

x 2
0 50 100

Epoch

0

0.2

0.4

0.6

Er
ro
r

• Each gating scheme yields a distinct effective dataset and
deep linear network trajectory

• The one which learns fastest dominates the solution

0 50 100 150 200
Epochs

0.0

0.2

0.4

M
SE

The neural race: stronger input-output correlations

Andrew Saxe
71

0 50 100 150 200
Epochs

0.0

0.2

0.4

M
SE

Analytical Mem

0 50 100 150 200
Epochs

0.0

0.2

0.4

M
SE

Analytical Mem

Analytical Lin

0 50 100 150 200
Epochs

0.0

0.2

0.4

M
SE

Analytical Mem

Analytical Lin

ReLU Simulation

°1 0 1
x1

°1

0

1

x
2

°1 0 1
x1

°1

0

1

x
2

°1 0 1
x1

°1

0

1

x
2

°1 0 1
x1

°1

0

1

x
2

𝑥6 𝑥/

𝑦

The neural race: edge sharing

Andrew Saxe
72

𝑥6 𝑥/

𝑦/𝑦6

𝑥6 𝑥/

𝑦/𝑦6

𝑥6 𝑥/

𝑦/𝑦6

0 50 100 150 200
Epochs

0.0

0.2

0.4

M
SE

0 50 100 150 200
Epochs

0.0

0.2

0.4

M
SE

Independent

0 50 100 150 200
Epochs

0.0

0.2

0.4

M
SE

Independent

Shared

0 50 100 150 200
Epochs

0.0

0.2

0.4

M
SE

Independent

Shared

Combined

Example: transition to nonlinearity

Andrew Saxe 73

Δ linearly separable with margin Δ for any Δ > 0,
collapses to XoR at Δ = 0

𝑥2
𝑥1

𝑥0

0 50 100 150
Epochs

0.0

0.2

0.4

M
SE

0 50 100 150
Epochs

0.0

0.2

0.4

0 50 100 150
Epochs

0.0

0.2

0.4

0 50 100 150
Epochs

0.0

0.2

0.4

0 50 100 150
Epochs

0.0

0.2

0.4 Linear

XoR

0 50 100 150
Epochs

0.0

0.2

0.4

M
SE

0 50 100 150
Epochs

0.0

0.2

0.4

0 50 100 150
Epochs

0.0

0.2

0.4

0 50 100 150
Epochs

0.0

0.2

0.4

0 50 100 150
Epochs

0.0

0.2

0.4 Linear

XoR

Sim

Δ = 0 Δ = 5

Example: transition to nonlinearity

Andrew Saxe 74

10°1 100

Separation ¢

101

102

Le
ar

ni
ng

ti
m

e
(E

po
ch

s)

Linear

XoR

Sim

10°1 100

Separation ¢

101

102

Le
ar

ni
ng

ti
m

e
(E

po
ch

s)

Linear

XoR

Δ345678 = 2/3

Nonlinear representations emerge before they are strictly necessary

𝑠9:; = Δ/2

𝑠<=> =
2 + Δ1

𝑃

Context-dependent Processing

Andrew Saxe 75

Ta
rg

et
 O

ut
pu

ts

Examples

Input Item

Hidden

Context

Output

Context-dependent Processing

Andrew Saxe 76

Context-dependent Processing

Andrew Saxe 77

Ta
rg

et
 O

ut
pu

ts

Examples

Input Item

Context A/B

Context

Output

Shared Context B/C Context A/C

Context-dependent Processing

Andrew Saxe 78

Input Item

Context A/B

Context

Output

Shared Context B/C Context A/C

Shared A/B A/C B/C Total

O
ut

pu
t f

ea
tu

re
s

Examples

Context-dependent processing

Andrew Saxe 79

Input Item

Context A/B

Context

Output

Shared Context B/C Context A/C Context A Context B Context C

Context-dependent processing

Andrew Saxe 80

Shared A/B A/C B/C Total

O
ut

pu
t f

ea
tu

re
s

Examples

A B C

Example: Routing network

Andrew Saxe 81

Ex: multilingual translation

Andrew Saxe 82

French

German

Spanish

French

German

Spanish

Each domain has distinctive inputs/outputs but similar underlying structural form

Andrew Saxe 83

Simple hierarchical dataset for each domain

Dataset
Subset of trained domain pairs

𝑀: # domains
𝐾: # trained output domains per input domain

Dynamics of abstraction

Andrew Saxe 84

1st hidden layer RSA

Epoch

Andrew Saxe 85

Systematic generalization

Saxe*, Sodhani*, & Lewallen, ICML 2022

% trained input/output domain pairs

Race dynamics favor shared structure

Andrew Saxe 86

Initialization dependence: rich vs lazy learning

Andrew Saxe 87

Factorization & principle of convergence

Andrew Saxe 88

Selket, https://commons.wikimedia.org/w/index.php?curid=1679336

What

Where

Weights

Gates

Rogers & McClelland, 2003

Multipotential representation learning

• Animals can recombine their existing knowledge to
exploit new opportunities

• In machine learning systems, this ability can emerge at
scale (e.g., in context learning)

• What are the factors that give rise to multipotential
representations?

Andrew Saxe 89

Conclusion & outlook

• Depth introduces a hierarchy of saddle points into the
loss landscape, yielding a quasi-systematic progression
through stages

• Initialization determines whether these saddle points
influence dynamics, yielding several learning regimes

• In nonlinear networks, pathways race to explain the
dataset

Andrew Saxe 90

References
• Saxe, A. M., McClelland, J. L., & Ganguli, S. (2019). A mathematical theory of semantic development in

deep neural networks. Proceedings of the National Academy of Sciences, 116(23), 11537–11546.

• Liebana Garcia et al. (2025). Dopamine encodes deep network teaching signals for individual learning
trajectories. Cell.

• Braun, L., Dominé, C.C.J., Fitzgerald, J., Saxe, A.M. (2022) Exact learning dynamics of deep linear networks
with prior knowledge. In NeurIPS.

• Dominé, C.C.J., Anguita, N., Proca, A. M., Braun, L., Kunin, D., Mediano, P. A. M., & Saxe, A. M. (2025).
From lazy to rich: Exact learning dynamics in deep linear networks. In ICLR.

• Saxe*, A. M., Sodhani*, S., & Lewallen, S. (2022). The Neural Race Reduction: Dynamics of Abstraction in
Gated Networks. In ICML. *Equal contribution.

• Jarvis, D., Klein, R., Rosman, B., Saxe, A.M. (2025). Make haste slowly: A theory of emergent structured
mixed selectivity in feature learning ReLU networks. In ICLR.

Andrew Saxe 91

Aaditya Singh
Anika Lowe
Basile Confavreux
Clementine Domine
Cris Holobetz
Devon Jarvis
Erin Grant
Jin Lee
Jirko Rubruck
Lukas Braun
Nishil Patel
Rodrigo Carrasco Davis
Rachel Swanson
Sam Lewallen
Sam Liebana
Sarah Armstrong
Sebastian Lee
Stefano Sarao Mannelli
Tyler Boyd-Meredith
Verena Klar
Victor Pedrosa

��

b b
&,)$5�$]ULHOL�*OREDO�6FKRODUV�3URJUDPb

�����6HOHFWLRQ�&RPPLWWHHb
�

�

3DQHO����&KLOG�	�%UDLQ�'HYHORSPHQW��/HDUQLQJ�LQ�0DFKLQHV�	�%UDLQV�ϫ
ϫ
�ĸ	ŁķŅĴ�
ĸĶľ��ļņ�	ņņłĶļĴŇĸ��ĸĴŁ�ĹłŅ��ĸņĸĴŅĶĻ�ļŁ��ŁŇĸŅŁĴŇļłŁĴĿ��Ňňķļĸņ�ĴŁķϫ
�ŅłĺŅĴŀņ�ĴŇ��ļĶĻļĺĴŁ��ŇĴŇĸ��ŁļŉĸŅņļŇŌ�̎���̏˫���Ļĸ�Ķł˭ĶĻĴļŅņ����˵ņ��łňŁĶļĿϫ
łĹ��ĸņĸĴŅĶĻ��ĸĴŁņ�ĴŁķ�ĻĴņ�ĶŅĸĴŇĸķ�ŇĻĸ��ĿłĵĴĿ��ŁŁłŉĴŇļłŁņ�ļŁ��ĸŉĸĿłŃŀĸŁŇ˨ϫ

ŁĺĴĺĸŀĸŁŇ˨�ĴŁķ��ĶĻłĿĴŅņĻļŃ�̎�ĿłĵĴĿ���
	�̏�ļŁļŇļĴŇļŉĸ�ĴŇ����˫���Ņ˫�
ĸĶľϫ
ŃŅĸŉļłňņĿŌ�ņĸŅŉĸķ�Ĵņ�Ĵ��ŅłĺŅĴŀ��ļŅĸĶŇłŅ�ļŁ�ŇĻĸ��˫�˫��ĴŇļłŁĴĿ��ĶļĸŁĶĸϫ
�łňŁķĴŇļłŁ˺ņ��ĹĹļĶĸ�łĹ��ŁŇĸŅŁĴŇļłŁĴĿ��ĶļĸŁĶĸ�ĴŁķ�
ŁĺļŁĸĸŅļŁĺ˨�ŊļŇĻϫ
ŅĸņŃłŁņļĵļĿļŇŌ�ĹłŅ����˵ņ��ĸŉĸĿłŃļŁĺ��łňŁŇŅŌ�ļŁļŇļĴŇļŉĸņ�ĴŁķ�ŇĻĸ��ļķķĿĸ�
ĴņŇϫ
ĴŁķ�	ĹŅļĶĴ�ŃłŅŇĹłĿļłņ˫��	Ň����˨�ņĻĸ�Ķł˭ŀĴŁĴĺĸķ��ĶļĸŁĶĸ�	ĶŅłņņ��ļŅŇňĴĿϫ
�ŁņŇļŇňŇĸņ�̎�	��̏˨�Ĵ�ŀĸĶĻĴŁļņŀ�Ňł�ĹłņŇĸŅ�ĺĿłĵĴĿ�ŃĴŅŇŁĸŅņĻļŃņ�ĴŀłŁĺ����ϫ
ĴŊĴŅķĸĸņ˨�ĴŁķ�ņĻĸ�ņĸŅŉĸķ�łŁ����˺ņ�������
�ŊłŅľļŁĺ�ĺŅłňŃ˨�Ĵ�ŃļĿłŇ�ŇĻĴŇ�ĻĴņϫ
ĵĸĶłŀĸ����˵ņ��	��
�ŀĸĶĻĴŁļņŀ�Ňł�ņłĿļĶļŇ�ĴŁķ�ĹňŁķ�ŇŅĴŁņĹłŅŀĴŇļŉĸ˨ϫ
ŀňĿŇļķļņĶļŃĿļŁĴŅŌ�ŅĸņĸĴŅĶĻ˫���ŅļłŅ�Ňł����˨��Ņ˫�
ĸĶľ�ņĸŅŉĸķ�Ĵņ�ŇĻĸ�ĴĶŇļŁĺϫ

�ĴŁĴĺļŁĺ��ļŅĸĶŇłŅ�ĹłŅ�
ŁŉļŅłŁŀĸŁŇ�ĴŁķ��łĶļĴĿ�	ņņĸņņŀĸŁŇ�ĴŇ�ŇĻĸ��˫�˫��ļĿĿĸŁŁļňŀ��ĻĴĿĿĸŁĺĸϫ
�łŅŃłŅĴŇļłŁ˫���ŅĸŉļłňņĿŌ˨�ņĻĸ�ņĸŅŉĸķ�Ĵņ�	ņņļņŇĴŁŇ��ļŅĸĶŇłŅ�ĹłŅ��łĿļĶŌ˨��˫�˫��łŅĸņŇ��ĸŅŉļĶĸ��ŁŇĸŅŁĴŇļłŁĴĿϫ
�ŅłĺŅĴŀņ˨�ŊĻĸŅĸ�ņĻĸ�ŅĸŃŅĸņĸŁŇĸķ�ŇĻĸ�ļŁŇĸŅĸņŇņ�łĹ�ŇĻĸ��˫�˫�ĹłŅĸņŇŅŌ�ĶłŀŀňŁļŇŌ�ļŁ�ļŁŇĸŅŁĴŇļłŁĴĿϫ
ŁĸĺłŇļĴŇļłŁņ˫��Ļĸņĸ�ŃłņļŇļłŁņ�ĹĿĴŁľĸķ�ĻĸŅ�ĹłŅĴŌ�ļŁŇł�ŇĻĸ�ŃŅļŉĴŇĸ�ņĸĶŇłŅ�Ĵņ��ĻļĸĹ�
ŋĸĶňŇļŉĸ��ĹĹļĶĸŅ�łĹ�Ĵϫ
ĵļłŇĸĶĻŁłĿłĺŌ�ņŇĴŅŇ˭ňŃ�ĶłŀŃĴŁŌ˫���Ņ˫�
ĸĶľ�ĻĸĿķ�ŃłņļŇļłŁņ�Ĵņ�ĴŁ�ļŁŇĸŅŁĴŇļłŁĴĿ�ŅĸņĸĴŅĶĻ�ĴķŀļŁļņŇŅĴŇłŅ�ĴŇϫ
ŇĻĸ����	��łŅĸļĺŁ�	ĺŅļĶňĿŇňŅĴĿ��ĸŅŉļĶĸ�ĴŁķ�Ĵņ�Ĵ�			���ĸĿĿłŊ�ĴŇ�ŇĻĸ��˫�˫�	ĺĸŁĶŌ�ĹłŅ��ŁŇĸŅŁĴŇļłŁĴĿϫ
�ĸŉĸĿłŃŀĸŁŇ˫���Ļĸ�ĸĴŅŁĸķ�Ĵ�
˫�˫�̎Ķňŀ�ĿĴňķĸ̏�ĴŁķ��Ļ˫�˫�ļŁ�ĵļłĶĻĸŀļņŇŅŌ�ĹŅłŀ��ĸŋĴņ�	Λ���ŁļŉĸŅņļŇŌ˫ϫ
ϫ

ϫ
�ĸŁŁļĹĸŅ��ĿļŀłŊļŇō��ĸĴŅĿ��ĿĸĴķņ�ŇĻĸ�ņŇŅĴŇĸĺļĶ�ĸŉłĿňŇļłŁ�ĴŁķ�ĺŅłŊŇĻ�łĹ�ŇĻĸϫ
			���ĶļĸŁĶĸ�Λ��ĸĶĻŁłĿłĺŌ��łĿļĶŌ��ĸĿĿłŊņĻļŃņ�̎����̏�ŃŅłĺŅĴŀ˫���ļŇĻ�Ĵϫ
ŇĸĴŀ�łĹ�̼̺�ņŇĴĹĹ�ĴŁķ�Ĵ�̤̻̀�ŀļĿĿļłŁ�ķłĿĿĴŅ�ĴŁŁňĴĿ�ĵňķĺĸŇ˨�ņĻĸ�ķļŅĸĶŇņ�ŃŅłĺŅĴŀņϫ
ĴŁķ�ŃŅłĹĸņņļłŁĴĿ�ķĸŉĸĿłŃŀĸŁŇ�ĹłŅ�łŉĸŅ�̼̺̿�ĹĸĿĿłŊņ�ļŁ�ŇĻĸ�ĸŋĸĶňŇļŉĸ˨�ĽňķļĶļĴĿϫ
ĴŁķ�ĿĸĺļņĿĴŇļŉĸ�ĵŅĴŁĶĻĸņ�łĹ�ŇĻĸ��˫�˫�ĺłŉĸŅŁŀĸŁŇ˫��Ņ˫��ĸĴŅĿ˵ņ�ĸŁŇĻňņļĴņŀ�ĹłŅϫ
ŇĻĸ������ŃŅłĺŅĴŀ�ņŇĸŀņ�ĹŅłŀ�ŇĻĸ�ļŀŃĴĶŇ�ļŇ�ĻĴņ�łŁ�ĹĸķĸŅĴĿ�ŃłĿļĶŌŀĴľļŁĺ˨�ŇĻĸϫ
ļŀŃĴĶŇ�ļŇ�ĻĴņ�łŁ�ĹĸĿĿłŊņ˵�ĶĴŅĸĸŅņ˨�ĴŁķ�ĻĸŅ�ŃĸŅņłŁĴĿ�ĸŋŃĸŅļĸŁĶĸ�Ĵņ�ĴŁ�ĴĿňŀŁĴ�łĹϫ
ŇĻĸ�ŃŅłĺŅĴŀ˫���Ņ˫��ĸĴŅĿ�Ňłłľ�łŁ�ĻĸŅ�ŅłĿĸ�ĴŇ�			��ĴĹŇĸŅ�̻̼�ŌĸĴŅņ�ĴŇ�ŇĻĸ��˫�˫ϫ
�ĴŇļłŁĴĿ��ĶļĸŁĶĸ��łňŁķĴŇļłŁ˨�ŊĻĸŅĸ�ņĻĸ�ņĸŅŉĸķ�Ĵņ�ŃŅłĺŅĴŀ�ķļŅĸĶŇłŅ�ļŁ�ŇĻĸϫ
�ļŉļņļłŁ�łĹ��ĴŇĻĸŀĴŇļĶĴĿ��ĶļĸŁĶĸņ�ĴŁķ�ŃŅłĺŅĴŀ�ķļŅĸĶŇłŅ�ļŁ�ŇĻĸ��ĹĹļĶĸ�łĹϫ

�ŁŇĸŅŁĴŇļłŁĴĿ��ĶļĸŁĶĸ�ĴŁķ�
ŁĺļŁĸĸŅļŁĺ˫���Ļĸ�ĻĴņ�ĴĿņł�ĻĸĿķ�ŃłņļŇļłŁņ�ĴŇ�ŇĻĸ��˫�˫��ĴŇļłŁĴĿ�	ĶĴķĸŀļĸņ�ĴŁķϫ
ĴŇ��ļĶĸ��ŁļŉĸŅņļŇŌ˫���Ņ˫��ĸĴŅĿ˨�Ĵ�̼̺̺̼˭̺̽�
ŋĸĶňŇļŉĸ�
ŅĴŁĶĻ��ĸĿĿłŊ�ĴŇ�ŇĻĸ��ĴŇļłŁĴĿ��ĶļĸŁĶĸ��łňŁķĴŇļłŁ˨ϫ
ĸĴŅŁĸķ�ĻĸŅ��Ļ˫�˫�ļŁ�ŀĴŇĻĸŀĴŇļĶņ�ļŁ�ŇĻĸ�ĹļĸĿķ�łĹ�ņŌŀŃĿĸĶŇļĶ�ĺĸłŀĸŇŅŌ�ĹŅłŀ�ŇĻĸ��ŇĴŇĸ��ŁļŉĸŅņļŇŌ�łĹ��ĸŊϫ
!łŅľ�ĴŇ��ŇłŁŌ�
Ņłłľ�ĴŁķ�Ĵ�
ĴĶĻĸĿłŅ�łĹ��ĶļĸŁĶĸ�ļŁ�ŀĴŇĻĸŀĴŇļĶņ�ĹŅłŀ��ňľĸ��ŁļŉĸŅņļŇŌ˫ϫ
ϫ

ϫ
�ļŀłŁ��łŀŀĸŅ�̎�ňŁĸ�̻̓̏��ĻĴņ�ĵĸĸŁ��ł˭�
��łĹ�ŇĻĸ��ĴĶłĵņ��łňŁķĴŇļłŁ�ņļŁĶĸϫ
̼̺̻̓˫���ĸĴķńňĴŅŇĸŅĸķ�ļŁ�"ňŅļĶĻ˨��ŊļŇōĸŅĿĴŁķ˨�ŇĻĸ��ĴĶłĵņ��łňŁķĴŇļłŁ�ļņ�łŁĸ�łĹϫ
ŇĻĸ�ŊłŅĿķ˵ņ�ĿĸĴķļŁĺ�ĹłňŁķĴŇļłŁņ�ļŁ�ŇĻĸ�ĹļĸĿķ�łĹ�ĶĻļĿķ�ĴŁķ�ŌłňŇĻ�ķĸŉĸĿłŃŀĸŁŇ˫ϫ
�Ňņ�ĶňŅŅĸŁŇ�ĸŁķłŊŀĸŁŇ�ļņ�ŉĴĿňĸķ�ĴŇ�ĴŃŃŅłŋļŀĴŇĸĿŌ�����́�ĵļĿĿļłŁ˫���Ň�ĶłŀŀļŇņϫ
ĴŁ�ĴŉĸŅĴĺĸ�ĴŁŁňĴĿ�ĵňķĺĸŇ�łĹ�����̾̿�ŀļĿĿļłŁ�Ňł�ņňŃŃłŅŇ�ŅĸņĸĴŅĶĻ�ĴŁķ�ŃŅłĺŅĴŀņϫ
ļŁ�ŇĻĸ�ĹļĸĿķņ�łĹ�ĿĸĴŅŁļŁĺ�ĴŁķ�ĶĻļĿķ�ĴŁķ�ŌłňŇĻ�ķĸŉĸĿłŃŀĸŁŇ˫���Ł�Ļļņ�ŃŅĸŉļłňņ�ŅłĿĸϫ

b

