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Overparametrized Shallow Nets

• Simplest non-linear model enabling feature learning. 

• Approximation and statistical advantage over linear 
methods [Barron,’90s, Bach’17]. 
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Overparametrized Shallow Nets

• Simplest non-linear model enabling feature learning. 

• Approximation and statistical advantage over linear 
methods [Barron,’90s, Bach’17].  

• Folklore: Wide NNs provide best learning tradeoffs in 
practice [Neyshabour et al, Yang, Hanin, Bartlett, many 
more] 
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[Kaplan et al]



Eulerian view of Shallow NNs

• Rewrite model  f(x) =
1
m

m

∑
j=1

ρ(x, θ̄j) = ∫𝒟
ρ(x, θ̄)dν(m)(θ̄) := fν(x) θ̄k

𝒟̄

ν(m) =
1
m ∑

j≤m

δθ̄j

Squared-loss: System of interacting particles

[Bach, Rosset et al. Chizat et al., Nitanda et al, Mei et al, Rotskoff&EVE, Kurkova et al]
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• Regression loss becomes ‘convex’ in terms of : 
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• Rewrite model   

• Regression loss becomes ‘convex’ in terms of : 

• Gradient Flow dynamics  in  lift to a Wasserstein Gradient 

Flow in :  

• Analysis of associated Wasserstein Gradient Flow: qualitative convergence to 
global minima in the thermodynamic limit .
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• Regression loss becomes ‘convex’ in terms of : 

• Gradient Flow dynamics  in  lift to a Wasserstein Gradient 

Flow in :  

• Analysis of associated Wasserstein Gradient Flow: qualitative convergence to 
global minima in the thermodynamic limit .
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θ̄k

𝒟̄

ν(m) =
1
m ∑

j≤m

δθ̄j

min
θ̄1,…θ̄m

L(θ̄) = 𝔼 | f(x) − y |2 ↔ min
ν

𝔼 ∫ ρ(x̃ ⋅ θ)dν(θ) − y
2

:= ℒ(ν) .

Towards quantitative (non-asymptotic) guarantees?

δℒ
δν

(θ) = U(θ; ν) :  instantaneous potential

Squared-loss: System of interacting particles



Quantitative Guarantees

• Remark: Not possible in all generality: existence of 
computational lower bounds under restricted 
algorithmic classes (SQ, LDP) [Goel et al, Diakonikolas 
et al.], or cryptographic assumptions [Song et al, Chen 
et al., Vardi et al. ].
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Quantitative Guarantees

• Remark: Not possible in all generality: existence of 
computational lower bounds under restricted 
algorithmic classes (SQ, LDP) [Goel et al, Diakonikolas 
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et al., Vardi et al. ]. 
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How about GD/GF on vanilla shallow NN?



Finite-width Fluctuations

• Static picture: Monte-Carlo Approximation 
 satisfiesθ1, …, θm ∼iid ν, fν(m)(x) =

1
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ρ(θj, x)

𝒫(𝒟)

ℰ(ν, ν(m)) := (𝔼x[ | fν(x) − fν(m)(x) |2 )1/2 ≲
𝔼[ |ρ(x, θ) |2 ]
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0 ) ∼
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Finite-width Fluctuations

• Static picture: Monte-Carlo Approximation 
 satisfies 

• Dynamic picture, aka Propagation-of-Chaos 
[Kac,Sznitman]:

θ1, …, θm ∼iid ν, fν(m)(x) =
1
m ∑

j≤m

ρ(θj, x)

𝒫(𝒟)

ℰ(ν, ν(m)) := (𝔼x[ | fν(x) − fν(m)(x) |2 )1/2 ≲
𝔼[ |ρ(x, θ) |2 ]

m ν0ν(m)
0

ℰ(ν0, ν(m)
0 ) ∼

1

m

νt : infinite-width trajectory

νt
ν(m)

t

ν(m)
t : finite-width trajectory

Does error remain at scale ? Expand? Contract?1/ m

For how long? 



• Goal: For time horizon  s.t. mean-field dynamics 
converge, establish polynomial PoC: 

 

• Generally, tension between MF-convergence rate and 
PoC expansion rate. 
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• Goal: For time horizon  s.t. mean-field dynamics 
converge, establish polynomial PoC: 

 

• Generally, tension between MF-convergence rate and 
PoC expansion rate. 

T

ℰ(νT, ν(m)
T ) ≲

poly(d, T)

m
, thus ℒ(ν(m)

T ) ≲
poly(d, T)

m
.

What assumptions to enable such polynomial control? 
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Coupling Dynamics

• Given , its empirical measure  satisfies 
 whp. 

νt (νt)(m)

ℰ(νt, (νt)(m)) = O(1/ m)

∂tνt = div (∇U(θ; νt)νt) , U( ⋅ , ν) : instantaneous potential.
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Coupling Dynamics

• Given , its empirical measure  satisfies 
 whp.  

• Solve transport eq via method of characteristics:  
Mean-Field particle evolution: ,  
Finite-Net evolution: , 
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·̄
θj = − ∇U(θ̄j(t); νt) θ̄j(0) ∼ ν0·θj = − ∇U(θj(t); ν(m)

t ) θj(0) = θ̄j(0) .

∂tνt = div (∇U(θ; νt)νt) , U( ⋅ , ν) : instantaneous potential.

𝒫(𝒟)

ν0
ν(m)

0

νt
(νt)(m)

ν(m)
t

ℰ ≃ 1/ m

How to choose a ‘good’ , coupled with ?(νt)(m) ν(m)
t

……

Same initialization

Same initialization

ℰ ≃ 1/ m

ν(m)
t : sample, then evolve

(νt)(m) : evolve, then sample



Coupling Dynamics

• Given , its empirical measure  satisfies 
 whp.  

• Solve transport eq via method of characteristics:  
Mean-Field particle evolution: ,  
Finite-Net evolution: ,  

• Proposition: under mild regularity, we have  
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Coupling Dynamics and Gronwall

• How does this error evolve over time?

Δj(t) = θj(t) − θ̄j(t) :  Coupling errors.
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Coupling Dynamics and Gronwall

• How does this error evolve over time? 

•  

• Key difficulty: non-convex potential expands trajectories.  

• Leveraging uniform Lipschitz smoothness:  
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• How does this error evolve over time? 

•  

• Key difficulty: non-convex potential expands trajectories.  

• Leveraging uniform Lipschitz smoothness:  
 

• PoC via Gronwall’s inequality:  

• Exploited in [Mei et al, Misiakiewicz et al, Mahankali et al] for short time-
horizons, e.g  or . Morally IE  ‘type’ problems. 
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Excludes many 
situations of interest!



PoC via Mean-Field Langevin Contraction

• Alternatively, one can regularize using entropic term: 
ℒ̃(ν) = ℒ(ν) + λH(ν) .

[Chizat et al., Suzuki et al., Nitanda]
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PoC via Mean-Field Langevin Contraction

• Alternatively, one can regularize using entropic term: 
 

• Noisy dynamics creates Wasserstein contraction via Log-Sobolev 
Inequality, leading to [Nitanda’24]:  

 

• Here,  is the LSI of minimiser, of order .
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1
m

+ exp(−2αmλt)ℰ(ν(m)
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• Alternatively, one can regularize using entropic term: 
 

• Noisy dynamics creates Wasserstein contraction via Log-Sobolev 
Inequality, leading to [Nitanda’24]:  

 

• Here,  is the LSI of minimiser, of order . 

• Efficient particle approximation, but cursed iteration complexity 
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PoC via Mean-Field Langevin Contraction

• Alternatively, one can regularize using entropic term: 
 

• Noisy dynamics creates Wasserstein contraction via Log-Sobolev 
Inequality, leading to [Nitanda’24]:  

 

• Here,  is the LSI of minimiser, of order . 

• Efficient particle approximation, but cursed iteration complexity 

 

ℒ̃(ν) = ℒ(ν) + λH(ν) .

ℰ(ν(m)
t , νt)2 ≲

1
m

+ exp(−2αmλt)ℰ(ν(m)
0 , ν*)
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T = O ( log ϵ−1

α2
mλϵ ) .
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Log-concavity is ‘artificial’ — noiseless alternative?



Setup from now on

• Shallow NN architecture with unit-norm 1st-layer weights and fixed 
2nd-layer weights:  

• Planted setting:  for some . 

• Training by Spherical Gradient Flow:  

f(x) =
1
m ∑

j≤m

ρ(θj ⋅ x) , θj ∈ 𝕊d−1 .

y = fν*(x) ν* ∈ 𝒫(𝕊d−1)

d
dt

θj = (I − θjθ⊤
j )∇θj

𝔼x[ | f(x) − fν*(x) |2 ]



Dissecting the Coupling Dynamics

• In regression, instantaneous potential writes  
, with U(θ; ρ) = − F(θ) + ∫ K(θ, θ′￼)dρ(θ′￼)

F(θ) = 𝔼[yρ(θ ⋅ x)] , K(θ, θ′￼) = 𝔼[ρ(θ ⋅ x)ρ(θ′￼⋅ x)] .
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θj(0)

θ̄j(t)

θj(t)Δj(t)
θi(0)

θi(t)
θ̄i(t) Δi(t)



Dissecting the Coupling Dynamics

• In regression, instantaneous potential writes  
, with 

 

• Define the local Hessians , , 

• and the interaction Hessians .  

U(θ; ρ) = − F(θ) + ∫ K(θ, θ′￼)dρ(θ′￼)

F(θ) = 𝔼[yρ(θ ⋅ x)] , K(θ, θ′￼) = 𝔼[ρ(θ ⋅ x)ρ(θ′￼⋅ x)] .

Di(t) = ∇2
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∇, ∇2 :  Spherical Gradient/ Hessian
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• Coupling errors  follow their own particle interaction system: 

  

U(θ; ρ) = − F(θ) + ∫ K(θ, θ′￼)dρ(θ′￼)

F(θ) = 𝔼[yρ(θ ⋅ x)] , K(θ, θ′￼) = 𝔼[ρ(θ ⋅ x)ρ(θ′￼⋅ x)] .

Di(t) = ∇2
θU(θ̄i(t); νt) ∈ ℝd×d i ∈ [m]

Hi,j(t) = ∇θ ∇θ′￼
K(θ̄i(t), θ̄j(t)) ⪰ 0

Δi(t)d
dt

Δi(t) = Di(t)Δi(t) − 𝔼j[Hi,jΔj(t)] + O(∥Δi∥2) + O(1/ m) .

𝒟θ1(0)
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θi(t)
θ̄i(t) Δi(t)

∇, ∇2 :  Spherical Gradient/ Hessian
“External field” Interaction term Source term
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• Key challenge: Local and interaction Hessians do not commute. 
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• Local stability matrix : how a perturbation of  (neuron ’s 
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position at time ) affects its position  at future time .
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Key ingredients to control growth?
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Ingredient 1: Local Strong Convexity

• Let  M-F flow map starting at : . 

• Instantaneous potentials  are locally strongly 
convex in a neighborhood of : 

  

ξt(θ) θ θ̄i(t) = ξt(θi)

U(ξt(θ); νt)
supp(ν*)

∃τ > 0; ∇2
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Support of ν*
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Ingredient 1: Local Strong Convexity

• Let  M-F flow map starting at : . 

• Instantaneous potentials  are locally strongly 
convex in a neighborhood of : 

   

• Implies that  is atomic in current formulation.   

• Also exploited in [Chizat’19] [Chen et al.’20] to obtain 
uniform-in-time, asymptotic (in , PoC. 

ξt(θ) θ θ̄i(t) = ξt(θi)

U(ξt(θ); νt)
supp(ν*)

∃τ > 0; ∇2
θU(ξt(θ); νt) ⪰ C ℒ(νt)𝖯𝕊

θ  for dist(ξt(θ), supp(ν*)) ≤ τ .

ν*

m)

Support of ν*

U(θ; νt)



Ingredient 2: Stability

• Local stability matrix now defined for any initial condition: 

Jθ(t, s) := exp (∫
t

s
∇2U(ξu(θ); νu)du) .

𝒟
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ξt(θ)
ξs(θ)



Ingredient 2: Stability

• Local stability matrix now defined for any initial condition: 

 

• For a desired convergence time , we assume: 

1. Uniform Stability:   

2. Average Stability far from convergence: 

.

Jθ(t, s) := exp (∫
t

s
∇2U(ξu(θ); νu)du) .

T
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∥Jθ(t, s)∥ = poly(d, T),

sup
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• For a desired convergence time , we assume: 

1. Uniform Stability:   

2. Average Stability far from convergence: 

.

Jθ(t, s) := exp (∫
t

s
∇2U(ξu(θ); νu)du) .

T

sup
s≤t≤T,θ

∥Jθ(t, s)∥ = poly(d, T),

sup
s≤t≤T,θ′￼

𝔼θ[∥Jθ(t, s)Hθ,θ′￼
(s)∥ ⋅ 1(dist(ξt(θ), supp(ν*)) > τ)] ≲ poly(τ−1)/T

𝒟
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Neurons ‘dispersed’ before converging

“Self-concordance” property: 
sharpness ∥Dθ(t)∥ ≲ ∥∇U(θt, νt)∥

dist Θ(1)
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Main Result

• Under local strong convexity and stability, we have quantitative PoC: 

• Theorem [GWB’25], informal: Assume LSC and Stability over horizon , plus 

technical regularity assumptions. Then whp  .

T
ℰ(νT, ν(m)

T ) ≲
poly(d, T)

m
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Main Result

• Under local strong convexity and stability, we have quantitative PoC: 

• Theorem [GWB’25], informal: Assume LSC and Stability over horizon , plus 

technical regularity assumptions. Then whp  . 

• If MF converges at horizon , then -sized finite net does too.  

• Result extends to empirical risk with additional  term. 

T
ℰ(νT, ν(m)

T ) ≲
poly(d, T)

m

T = poly(d) poly

O( d/n)

When can we verify these assumptions?



Application: Single-Index Models

• Well-specified, Gaussian setting: , ,  

• even function with Information-Exponent  

• Theorem [GWB’25]: Let  trained with 

L2-loss on  iid samples for  . Then if 
, we have whp 

x ∼ 𝒩(0,Id) y = ρ(θ* ⋅ x) + w

ρ : k⋆ ≥ 4.

fν(m)
t

(x) =
1
m ∑

j≤m

ρ(θj(t) ⋅ x)

n T = O(δ−k⋆+1dk⋆/2−1)
m ≳ d13k⋆, n ≳ d11k⋆ ∥fν(m)

T
− f*∥2 = O(δ2) .



Application: Single-Index Models

• Well-specified, Gaussian setting: , ,  

• even function with Information-Exponent  

• Theorem [GWB’25]: Let  trained with 

L2-loss on  iid samples for  . Then if 
, we have whp  

•  violates current stability assumptions; covered in [Damian 
et al,’22], [Mahankali et al].  

• Exploits self-concordance of SIM landscapes: 
.  

x ∼ 𝒩(0,Id) y = ρ(θ* ⋅ x) + w

ρ : k⋆ ≥ 4.

fν(m)
t

(x) =
1
m ∑

j≤m

ρ(θj(t) ⋅ x)

n T = O(δ−k⋆+1dk⋆/2−1)
m ≳ d13k⋆, n ≳ d11k⋆ ∥fν(m)

T
− f*∥2 = O(δ2) .

k⋆ = 2

∥∇2U(θ)∥ ≃ (θ ⋅ θ*)−1∥∇U(θ)∥
Figure 2: Non-Uniform Dynamics in SIM with IE 4 (f→(x) = He4(x↑w→) for x → R32. We plot
D↓

t (i), ↑!t(i)↑,ωt(wi) = |w→εt(wi)| for each neuron. Left: Top eigenvalue of the local hessians D↓
t (i). Cen-

ter: ↑!t(i)↑, Right: Alignment ωt(wi) with the teacher neuron. A key challenge in the IE > 2 setting is the variance
in Lipschitzness among the different neurons, and in ↑!t(i)↑.

where we recall that the perturbation matrix J→
t,s(i) measures of the stability of εt(w) with respect to pertur-

bations at time s. Naively, J→
t,s(wi) appears to grow at an exponential rate whenever the local landscape of

the linearized loss around εt(wi) (see Remark 1) is non-convex.
A key observation of our work is that when wi escapes certain higher-order saddles, ↑J→

t,s(i)↑ will be
bounded polynomially in t↓ s. We achieve this by showing a certain self-concordance-like property which
upper bounds D→

t (i) using the velocity (which is small near the saddle). Thus one part of our assumptions
will be a worst-case polynomial bound on ↑J→

t,s(w)↑ (see Stability Assumption).

The Interaction Term: A Blessing and a Curse. At first glance, the presence of the PSD interaction term
H→

t in (3.1) seems like it can only help us bound Ei↑!t(i)↑. Indeed, if we ignore the local D→
t terms in the

ODE, we would have that d
dt!t = ↓H→

t !t, and thus we could show that Ei↑!t(i)↑2, an upper bound on
the Wasserstein-2 distance W2(ϑ̂mt , ϑMF

t ), is non-increasing.
However, the interaction of H→

t and D→
t can lead to precarious situations if the neurons move at non-

uniform rates. To see this possibility, suppose for some neuron wi, !t(i) first grows by a polynomial factor
due to D→

t (i), and then propagates that error, via the interaction term, to a different neuron wj . Later
on, when neuron wj escapes the saddle, it will grow !t(j) by a polynomial factor. The process can then
continue by “passing off” the error between neurons such that it grows in an exponential fashion, without
any neuron doing more than “polynomial growth” of the error itself.

To rule out such a scenario, we will impose an assumption that leverages the intuition that in many
teacher-student settings with uniform initialization, the neurons are dispersed before converging to the
teacher neurons. Thus on average, the interaction term – whose scale is dictated by inner product w↑

i wj

– is small, and cannot propagate too much error to these neurons. Specifically, the interaction term drives
changes in the error according to the interaction Hessian, H→

t : an error of !t(j) at neuron wj causes a force
of ↓H→

t (i, j)!t(j) on the error of neuron wi. Following Equation (2.2), this force propagates into an error
of scale Rt,s(i, j)!s(j) on neuron wi at time t, where Rt,s(i, j) := J→

t,s(i)H
→
s (i, j).

The second part of Assumption Stability states that the average of Rt,s(i, j), over all neurons i far from
supp(ϑ↓), is small.

Behavior Near the Teacher Neurons. While the second part of Assumption Stability is quite powerful,
we cannot hope that it holds for neurons near the teacher neurons. Indeed, when i and j are both near some
w↓ → supp(ϑ↓), then ↑Rt,t(i, j)↑ = ↑H→

t (i, j)↑ = ”(1). Thus for neurons near supp(ϑ↓), we will need to
leverage the fact that H→

t is PSD. A key contribution of our work is constructing a novel potential function
which can leverage this term. We discuss this at length in Section 4.
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Proof Overview
d
dt

Δi(t) = Di(t)Δi(t) − 𝔼j[Hi,jΔj(t)] + ϵi(t) .
Self-interaction: driven by local Hessian ∇2U(θ; νt)
Interactions: driven by neuron repulsion kernel ∇θ ∇θ′￼

K(θ, θ′￼)
Source term: at Monte-Carlo scale O(1/ m)
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• Ignoring neuron interactions: exploit uniform stability 
 

• Ignoring self-interactions: PSD kernel contracts . 

• Main challenge: interplay between these terms.  

• Coupling dynamics driven by sparse fluctuations  ‘natural’ metric is 
. 

• Near initialisation, dynamics are driven by local term , thanks to the 
average stability assumption (neurons are dispersed before converging).
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Proof Overview

• Near convergence, dynamics are driven by interaction terms : 

• Balanced Interaction Lemma: If  is small, then interaction dynamics cannot 
increase it too much: 
Let , and consider eigendecomposition .  

For , we have  

• Exploited by designing appropriate potential function  that combines interaction at 
convergence  and surrogate quantity of interest .

Hi,j(t)

𝔼i∥Δi(s)∥1

d
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t
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(c) scaled parameter coupling error
m(Ei→!̂t(i)→)2.

Figure 3: Well-specified single-index (He4) target function f→(x) = He4(x↑w→), x ↓ N (0, Id), and ω =
He4. We set d = 32 and learning rate ε = 0.01.
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t
↑ fωMF
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(c) scaled parameter coupling error
m(Ei→!̂t(i)→)2.

Figure 4: Misspecified single-index (Misspecified) target function f→(x) = 0.8He4(x↑w→) +
0.6He6(x↑w→), x ↓ N (0, Id), and ω = He4 + He6. We set d = 32 and learning rate ε = 0.01.
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Figure 5: 4-parity (XOR4) target function f→(x) =
∏

j↓4[x]j , [x]i ↓ Unif{1,↑1}, and ω = SoftPlus with
temperature 16. We set d = 32 and learning rate ε = 0.05.

7 Conclusion

We studied propagation of chaos in the context of gradient-based training of shallow neural networks. By
leveraging several key geometric assumptions of the optimization landscape, we established non-asymptotic
guarantees of finite-width dynamics with polynomial dependency in all relevant parameters. At the heart
of our technical contributions is a tailored potential function that balances the intricate interactions that
arise between particle fluctuations around their idealized mean-field evolution. In essence, our assumptions
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Next Steps / Questions

• Relaxing LSC to allow mis-specified problems  

• Establishing stability properties beyond ‘self-concordant’ SIM-MIM-type 
problems? BBP-like? 

• Effect of step-size: Links between sharpness and velocity related to central 
flow [Cohen & Damian et al]? 

• Relationship with DMFT analysis of fluctuations [Bordelon et al]? 

• Links between PoC and scaling laws, beyond linear models [Paquette et al.]?
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