

Propagation-of-Chaos in Shallow NNs beyond Logarithmic time

Margalit Glasgow
Denny Wu
Joan Bruna

Joint Work with

Margalit Glasgow (MIT)

Denny Wu (NYU/Flatiron)

Overparametrized Shallow Nets

- Simplest non-linear model enabling feature learning.
- Approximation and statistical advantage over linear methods [Barron,'90s, Bach'17].

Hidden dim

$$f(x) = \sum_{j=1}^{m} a_j \rho(\theta_j^{\mathsf{T}} x + b_j)$$

Overparametrized Shallow Nets

- Simplest non-linear model enabling feature learning.
- Approximation and statistical advantage over linear methods [Barron,'90s, Bach'17].
- Folklore: Wide NNs provide best learning tradeoffs in practice [Neyshabour et al, Yang, Hanin, Bartlett, many more]

 $f(x) = \sum_{j=1}^{m} a_j \rho(\theta_j^{\mathsf{T}} x + b_j)$

[Kaplan et al]

[Bach, Rosset et al. Chizat et al., Nitanda et al, Mei et al, Rotskoff&EVE, Kurkova et al]

Squared-loss: System of interacting particles

Rewrite model
$$f(x) = \frac{1}{m} \sum_{j=1}^{m} \rho(x, \bar{\theta}_j) = \int_{\mathcal{D}} \rho(x, \bar{\theta}) d\nu^{(m)}(\bar{\theta}) := f_{\nu}(x)$$

[Bach, Rosset et al. Chizat et al., Nitanda et al, Mei et al, Rotskoff&EVE, Kurkova et al]

Squared-loss: System of interacting particles

Rewrite model
$$f(x) = \frac{1}{m} \sum_{j=1}^{m} \rho(x, \bar{\theta}_j) = \int_{\mathcal{D}} \rho(x, \bar{\theta}) d\nu^{(m)}(\bar{\theta}) := f_{\nu}(x)$$

• Regression loss becomes 'convex' in terms of ν :

$$\min_{\bar{\theta}_1, \dots, \bar{\theta}_m} L(\bar{\theta}) = \mathbb{E} |f(x) - y|^2 \leftrightarrow \min_{\nu} \mathbb{E} \left| \int \rho(\tilde{x} \cdot \theta) d\nu(\theta) - y \right|^2 := \mathcal{L}(\nu) .$$

[Bach, Rosset et al. Chizat et al., Nitanda et al, Mei et al, Rotskoff&EVE, Kurkova et al]

Squared-loss: System of **interacting** particles

Rewrite model
$$f(x) = \frac{1}{m} \sum_{j=1}^{m} \rho(x, \bar{\theta}_j) = \int_{\mathcal{D}} \rho(x, \bar{\theta}) d\nu^{(m)}(\bar{\theta}) := f_{\nu}(x)$$

• Regression loss becomes 'convex' in terms of ν :

$$\min_{\bar{\theta}_1, \dots, \bar{\theta}_m} L(\bar{\theta}) = \mathbb{E} |f(x) - y|^2 \leftrightarrow \min_{\nu} \mathbb{E} \left| \int \rho(\tilde{x} \cdot \theta) d\nu(\theta) - y \right|^2 := \mathcal{L}(\nu) .$$

• Gradient Flow dynamics $\dot{\bar{\theta}}_j = -\nabla_{\bar{\theta}_j} L(\bar{\theta})$ in $\bar{\mathcal{D}}^m$ lift to a Wasserstein Gradient Flow in $\mathscr{P}(\bar{\mathcal{D}})$: $\partial_t \nu_t = \operatorname{div} \left(\nabla \frac{\delta \mathscr{L}}{\delta \nu} \nu_t \right) \qquad \frac{\delta \mathscr{L}}{\delta \nu} (\theta) = U(\theta; \nu)$: instantaneous potential

$$\nu^{(m)} = \frac{1}{m} \sum_{j \le m} \delta_{\bar{\theta}_j}$$

[Bach, Rosset et al. Chizat et al., Nitanda et al, Mei et al, Rotskoff&EVE, Kurkova et al]

Squared-loss: System of interacting particles

Rewrite model
$$f(x) = \frac{1}{m} \sum_{j=1}^{m} \rho(x, \bar{\theta}_j) = \int_{\mathcal{D}} \rho(x, \bar{\theta}) d\nu^{(m)}(\bar{\theta}) := f_{\nu}(x)$$

• Regression loss becomes 'convex' in terms of ν :

$$\min_{\bar{\theta}_1, \dots \bar{\theta}_m} L(\bar{\theta}) = \mathbb{E} |f(x) - y|^2 \leftrightarrow \min_{\nu} \mathbb{E} \left| \int \rho(\tilde{x} \cdot \theta) d\nu(\theta) - y \right|^2 := \mathcal{L}(\nu) .$$

- Gradient Flow dynamics $\dot{\bar{\theta}}_j = -\nabla_{\bar{\theta}_j} L(\bar{\theta})$ in $\bar{\mathcal{D}}^m$ lift to a Wasserstein Gradient Flow in $\mathscr{P}(\bar{\mathcal{D}})$: $\partial_t \nu_t = \operatorname{div} \left(\nabla \frac{\delta \mathscr{L}}{\delta \nu} \nu_t \right) \qquad \frac{\delta \mathscr{L}}{\delta \nu}(\theta) = U(\theta; \nu)$: instantaneous potential
- Analysis of associated Wasserstein Gradient Flow: **qualitative** convergence to global minima in the thermodynamic limit $m \to \infty$.

[Bach, Rosset et al. Chizat et al., Nitanda et al, Mei et al, Rotskoff&EVE, Kurkova et al]

Squared-loss: System of interacting particles

Rewrite model
$$f(x) = \frac{1}{m} \sum_{j=1}^{m} \rho(x, \bar{\theta}_j) = \int_{\mathcal{D}} \rho(x, \bar{\theta}) d\nu^{(m)}(\bar{\theta}) := f_{\nu}(x)$$

• Regression loss becomes 'convex' in terms of ν :

$$\min_{\bar{\theta}_1, \dots \bar{\theta}_m} L(\bar{\theta}) = \mathbb{E} |f(x) - y|^2 \leftrightarrow \min_{\nu} \mathbb{E} \left| \int \rho(\tilde{x} \cdot \theta) d\nu(\theta) - y \right|^2 := \mathcal{L}(\nu) .$$

- Gradient Flow dynamics $\dot{\bar{\theta}}_j = -\nabla_{\bar{\theta}_j} L(\bar{\theta})$ in $\bar{\mathcal{D}}^m$ lift to a Wasserstein Gradient Flow in $\mathscr{P}(\bar{\mathcal{D}})$: $\partial_t \nu_t = \operatorname{div} \left(\nabla \frac{\delta \mathscr{L}}{\delta \nu} \nu_t \right) \qquad \frac{\delta \mathscr{L}}{\delta \nu}(\theta) = U(\theta; \nu)$: instantaneous potential
- Analysis of associated Wasserstein Gradient Flow: **qualitative** convergence to global minima in the thermodynamic limit $m \to \infty$.

 $j \le m$

Towards quantitative (non-asymptotic) guarantees?

Quantitative Guarantees

• Remark: Not possible in all generality: existence of computational lower bounds under restricted algorithmic classes (SQ, LDP) [Goel et al, Diakonikolas et al.], or cryptographic assumptions [Song et al, Chen et al., Vardi et al.].

Quantitative Guarantees

- Remark: Not possible in all generality: existence of computational lower bounds under restricted algorithmic classes (SQ, LDP) [Goel et al, Diakonikolas et al.], or cryptographic assumptions [Song et al, Chen et al., Vardi et al.].
- **First option**: exploit structural assumptions with *dedicated* architectures / algorithms, e.g. multi-index models [Abbe et al, Dandi et al, Damian et al, Diakonikolas et al, Bietti et al, Wu et al, ...] (cf Bruno's talk tomorrow)

Quantitative Guarantees

- Remark: Not possible in all generality: existence of computational lower bounds under restricted algorithmic classes (SQ, LDP) [Goel et al, Diakonikolas et al.], or cryptographic assumptions [Song et al, Chen et al., Vardi et al.].
- **First option**: exploit structural assumptions with *dedicated* architectures / algorithms, e.g. multi-index models [Abbe et al, Dandi et al, Damian et al, Diakonikolas et al, Bietti et al, Wu et al, ...] (cf Bruno's talk tomorrow)

How about GD/GF on vanilla shallow NN?

• Static picture: Monte-Carlo Approximation
$$\theta_1, \dots, \theta_m \sim_{iid} \nu, f_{\nu^{(m)}}(x) = \frac{1}{m} \sum_{j \leq m} \rho(\theta_j, x) \text{ satisfies}$$

$$\mathscr{E}(\nu, \nu^{(m)}) := (\mathbb{E}_x[|f_{\nu}(x) - f_{\nu^{(m)}}(x)|^2)^{1/2} \lesssim \frac{\sqrt{\mathbb{E}[|\rho(x, \theta)|^2]}}{\sqrt{m}}$$

• Static picture: Monte-Carlo Approximation
$$\theta_1, \dots, \theta_m \sim_{iid} \nu, f_{\nu^{(m)}}(x) = \frac{1}{m} \sum_{j \leq m} \rho(\theta_j, x) \text{ satisfies}$$

$$\mathscr{E}(\nu, \nu^{(m)}) := (\mathbb{E}_x[|f_{\nu}(x) - f_{\nu^{(m)}}(x)|^2)^{1/2} \lesssim \frac{\sqrt{\mathbb{E}[|\rho(x, \theta)|^2]}}{\sqrt{m}}$$

• Dynamic picture, aka Propagation-of-Chaos [Kac,Sznitman]:

Does error remain at scale $1/\sqrt{m}$? Expand? Contract?

For how long?

 ν_t : infinite-width trajectory $\nu_{t}^{(m)}$: finite-width trajectory

• **Goal**: For time horizon *T* s.t. mean-field dynamics converge, establish polynomial PoC:

converge, establish polynomial PoC:
$$\mathcal{E}(\nu_T, \nu_T^{(m)}) \lesssim \frac{\text{poly}(d, T)}{\sqrt{m}} \text{ , thus } \mathcal{L}(\nu_T^{(m)}) \lesssim \frac{\text{poly}(d, T)}{\sqrt{m}} \text{ .}$$

• Generally, tension between MF-convergence rate and PoC expansion rate.

 ν_t : infinite-width trajectory $\nu_t^{(m)}$: finite-width trajectory

 $\mathscr{P}(\mathscr{D})$

• **Goal**: For time horizon *T* s.t. mean-field dynamics converge, establish polynomial PoC:

converge, establish polynomial PoC:
$$\mathscr{E}(\nu_T, \nu_T^{(m)}) \lesssim \frac{\text{poly}(d, T)}{\sqrt{m}} \text{ , thus } \mathscr{L}(\nu_T^{(m)}) \lesssim \frac{\text{poly}(d, T)}{\sqrt{m}} \text{ .}$$

• Generally, tension between MF-convergence rate and PoC expansion rate.

 ν_t : infinite-width trajectory $\nu_t^{(m)}$: finite-width trajectory

 $\mathscr{P}(\mathscr{D})$

 $\partial_t \nu_t = \text{div} \left(\nabla U(\theta; \nu_t) \nu_t \right)$, $U(\cdot, \nu)$: instantaneous potential.

• Given ν_t , its empirical measure $(\nu_t)^{(m)}$ satisfies $\mathcal{E}(\nu_t, (\nu_t)^{(m)}) = O(1/\sqrt{m})$ whp.

 $\partial_t \nu_t = \operatorname{div} \left(\nabla U(\theta; \nu_t) \nu_t \right)$, $U(\cdot, \nu)$: instantaneous potential.

• Given ν_t , its empirical measure $(\nu_t)^{(m)}$ satisfies $\mathcal{E}(\nu_t, (\nu_t)^{(m)}) = \tilde{O}(1/\sqrt{m})$ whp.

How to choose a 'good' $(\nu_t)^{(m)}$, coupled with $\nu_t^{(m)}$?

 $\nu_t^{(m)}$: sample, then evolve $(\nu_t)^{(m)}$: evolve, then sample

 $\partial_t \nu_t = \text{div} \left(\nabla U(\theta; \nu_t) \nu_t \right)$, $U(\cdot, \nu)$: instantaneous potential.

• Given ν_t , its empirical measure $(\nu_t)^{(m)}$ satisfies $\mathcal{E}(\nu_t, (\nu_t)^{(m)}) = \tilde{O}(1/\sqrt{m})$ whp.

How to choose a 'good' $(\nu_t)^{(m)}$, coupled with $\nu_t^{(m)}$?

• Solve transport eq via method of characteristics: Mean-Field particle evolution: $\dot{\bar{\theta}}_j = -\nabla U(\bar{\theta}_j(t); \nu_t), \bar{\theta}_j(0) \sim \nu_0$ Finite-Net evolution: $\dot{\theta}_j = -\nabla U(\theta_j(t); \nu_t^{(m)}), \overline{\theta_j(0)} = \bar{\theta}_j(0)$

 $\nu_t^{(m)}$: sample, then evolve $(\nu_t)^{(m)}$: evolve, then sample

 $\partial_t \nu_t = \text{div} \left(\nabla U(\theta; \nu_t) \nu_t \right)$, $U(\cdot, \nu)$: instantaneous potential.

• Given ν_t , its empirical measure $(\nu_t)^{(m)}$ satisfies $\mathscr{E}(\nu_t, (\nu_t)^{(m)}) = \tilde{O}(1/\sqrt{m})$ whp.

How to choose a 'good' $(\nu_t)^{(m)}$, coupled with $\nu_t^{(m)}$?

- Solve transport eq via method of characteristics: Mean-Field particle evolution: $\dot{\bar{\theta}}_j = -\nabla U(\bar{\theta}_j(t); \nu_t), \bar{\theta}_j(0) \sim \nu_0$ Finite-Net evolution: $\dot{\theta}_j = -\nabla U(\theta_j(t); \nu_t^{(m)}), \overline{\theta_j(0)} = \bar{\theta}_j(0)$
- **Proposition**: under mild regularity, we have $\mathscr{E}(\nu_t^{(m)}, \nu_t) \lesssim O(1\sqrt{m}) + W_1(\nu_t^{(m)}, (\nu_t)^{(m)}) \leq O(1/\sqrt{m}) + \mathbb{E}_j[\|\theta_j(t) \bar{\theta}_j(t)\|]$

 $\nu_t^{(m)}$: sample, then evolve $(\nu_t)^{(m)}$: evolve, then sample

 $\Delta_i(t)$

$$\Delta_j(t) = \theta_j(t) - \bar{\theta}_j(t)$$
: Coupling errors.

• How does this error evolve over time?

$$\Delta_j(t) = \theta_j(t) - \bar{\theta}_j(t)$$
: Coupling errors.

- How does this error evolve over time?
- $\dot{\Delta}_j = \dot{\theta}_j \dot{\bar{\theta}}_j = \nabla U(\theta_j; \nu_t^{(m)}) \nabla U(\bar{\theta}_j; \nu_t)$
- Key difficulty: non-convex potential expands trajectories.

$$\Delta_j(t) = \theta_j(t) - \bar{\theta}_j(t)$$
: Coupling errors.

- How does this error evolve over time?
- $\dot{\Delta}_j = \dot{\theta}_j \dot{\bar{\theta}}_j = \nabla U(\theta_j; \nu_t^{(m)}) \nabla U(\bar{\theta}_j; \nu_t)$
- Key difficulty: non-convex potential expands trajectories.

$$\Delta_j(t) = \theta_j(t) - \bar{\theta}_j(t)$$
: Coupling errors.

- How does this error evolve over time?
- $\dot{\Delta}_j = \dot{\theta}_j \dot{\bar{\theta}}_j = \nabla U(\theta_j; \nu_t^{(m)}) \nabla U(\bar{\theta}_j; \nu_t)$
- Key difficulty: non-convex potential expands trajectories.

$$\Delta_j(t) = \theta_j(t) - \bar{\theta}_j(t)$$
: Coupling errors.

- How does this error evolve over time?
- $\dot{\Delta}_j = \dot{\theta}_j \dot{\bar{\theta}}_j = \nabla U(\theta_j; \nu_t^{(m)}) \nabla U(\bar{\theta}_j; \nu_t)$
- Key difficulty: non-convex potential expands trajectories.
- Leveraging uniform Lipschitz smoothness:

$$\frac{d}{dt} \mathbb{E}_{j} \|\Delta_{j}(t)\| \leq L_{\theta} \mathbb{E}_{j} \|\Delta_{j}(t)\| + L_{\nu} W_{1}(\nu_{t}^{(m)}, (\nu_{t})^{(m)}) + O(1/\sqrt{m})
\leq (L_{\theta} \vee L_{\nu}) \mathbb{E}_{j} \|\Delta_{j}(t)\| + O(1/\sqrt{m}).$$

$$\Delta_j(t) = \theta_j(t) - \bar{\theta}_j(t)$$
: Coupling errors.

- How does this error evolve over time?
- $\dot{\Delta}_j = \dot{\theta}_j \dot{\bar{\theta}}_j = \nabla U(\theta_j; \nu_t^{(m)}) \nabla U(\bar{\theta}_j; \nu_t)$
- Key difficulty: non-convex potential expands trajectories.
- Leveraging uniform Lipschitz smoothness:

$$\frac{d}{dt} \mathbb{E}_{j} \|\Delta_{j}(t)\| \leq L_{\theta} \mathbb{E}_{j} \|\Delta_{j}(t)\| + L_{\nu} W_{1}(\nu_{t}^{(m)}, (\nu_{t})^{(m)}) + O(1/\sqrt{m})
\leq (L_{\theta} \vee L_{\nu}) \mathbb{E}_{j} \|\Delta_{j}(t)\| + O(1/\sqrt{m}).$$

- PoC via Gronwall's inequality: $\mathcal{E}(\nu_t^{(m)}, \nu_t) \lesssim \frac{\exp(Lt)}{\sqrt{m}}$.
 - Exploited in [Mei et al, Misiakiewicz et al, Mahankali et al] for **short** time-horizons, e.g T = O(1) or $T = O(\log d)$. Morally IE ≤ 2 'type' problems.

$$L = L_{\theta} \vee L_{\nu}$$

$$\Delta_j(t) = \theta_j(t) - \bar{\theta}_j(t)$$
: Coupling errors.

- How does this error evolve over time?
- $\dot{\Delta}_j = \dot{\theta}_j \dot{\bar{\theta}}_j = \nabla U(\theta_j; \nu_t^{(m)}) \nabla U(\bar{\theta}_j; \nu_t)$
- Key difficulty: non-convex potential expands trajectories.
- Leveraging uniform Lipschitz smoothness:

$$\frac{d}{dt} \mathbb{E}_{j} \|\Delta_{j}(t)\| \leq L_{\theta} \mathbb{E}_{j} \|\Delta_{j}(t)\| + L_{\nu} W_{1}(\nu_{t}^{(m)}, (\nu_{t})^{(m)}) + O(1/\sqrt{m})
\leq (L_{\theta} \vee L_{\nu}) \mathbb{E}_{j} \|\Delta_{j}(t)\| + O(1/\sqrt{m}).$$

- PoC via Gronwall's inequality: $\mathcal{E}(\nu_t^{(m)}, \nu_t) \lesssim \frac{\exp(Lt)}{\sqrt{m}}$.
 - Exploited in [Mei et al, Misiakiewicz et al, Mahankali et al] for **short** time-horizons, e.g T = O(1) or $T = O(\log d)$. Morally IE ≤ 2 'type' problems.

Excludes many situations of interest!

[Chizat et al., Suzuki et al., Nitanda]

• Alternatively, one can regularize using entropic term:

$$\tilde{\mathcal{L}}(\nu) = \mathcal{L}(\nu) + \lambda H(\nu) .$$

[Chizat et al., Suzuki et al., Nitanda]

• Alternatively, one can regularize using entropic term:

$$\tilde{\mathcal{Z}}(\nu) = \mathcal{Z}(\nu) + \lambda H(\nu) .$$

• Noisy dynamics creates Wasserstein contraction via Log-Sobolev Inequality, leading to [Nitanda'24]:

$$\mathscr{E}(\nu_t^{(m)}, \nu_t)^2 \lesssim \frac{1}{m} + \exp(-2\alpha_m \lambda t) \mathscr{E}(\nu_0^{(m)}, \nu_*)$$

• Here, α_m is the LSI of minimiser, of order $\alpha_m \simeq \exp(-\Theta(m/\lambda))$.

[Chizat et al., Suzuki et al., Nitanda]

• Alternatively, one can regularize using entropic term:

$$\tilde{\mathcal{L}}(\nu) = \mathcal{L}(\nu) + \lambda H(\nu) .$$

• Noisy dynamics creates Wasserstein contraction via Log-Sobolev Inequality, leading to [Nitanda'24]:

$$\mathcal{E}(\nu_t^{(m)}, \nu_t)^2 \lesssim \frac{1}{m} + \exp(-2\alpha_m \lambda t) \mathcal{E}(\nu_0^{(m)}, \nu_*)$$

- Here, α_m is the LSI of minimiser, of order $\alpha_m \simeq \exp(-\Theta(m/\lambda))$.
- Efficient particle approximation, but cursed iteration complexity

$$T = O\left(\frac{\log \epsilon^{-1}}{\alpha_m^2 \lambda \epsilon}\right).$$

[Chizat et al., Suzuki et al., Nitanda]

• Alternatively, one can regularize using entropic term:

$$\tilde{\mathcal{L}}(\nu) = \mathcal{L}(\nu) + \lambda H(\nu) .$$

• Noisy dynamics creates Wasserstein contraction via Log-Sobolev Inequality, leading to [Nitanda'24]:

$$\mathcal{E}(\nu_t^{(m)}, \nu_t)^2 \lesssim \frac{1}{m} + \exp(-2\alpha_m \lambda t) \mathcal{E}(\nu_0^{(m)}, \nu_*)$$

- Here, α_m is the LSI of minimiser, of order $\alpha_m \simeq \exp(-\Theta(m/\lambda))$.
- Efficient particle approximation, but cursed iteration complexity

$$T = O\left(\frac{\log \epsilon^{-1}}{\alpha_m^2 \lambda \epsilon}\right).$$

Log-concavity is 'artificial' — noiseless alternative?

Setup from now on

- Shallow NN architecture with unit-norm 1st-layer weights and fixed 2nd-layer weights: $f(x) = \frac{1}{m} \sum_{j \le m} \rho(\theta_j \cdot x)$, $\theta_j \in \mathbb{S}^{d-1}$.
- Planted setting: $y = f_{\nu^*}(x)$ for some $\nu^* \in \mathcal{P}(\mathbb{S}^{d-1})$.
- Training by Spherical Gradient Flow: $\frac{d}{dt}\theta_j = (I \theta_j \theta_j^{\mathsf{T}}) \nabla_{\theta_j} \mathbb{E}_x[|f(x) f_{\nu^*}(x)|^2]$

• In regression, instantaneous potential writes

$$U(\theta; \rho) = -F(\theta) + \int K(\theta, \theta') d\rho(\theta'), \text{ with}$$

$$F(\theta) = \mathbb{E}[y\rho(\theta \cdot x)], K(\theta, \theta') = \mathbb{E}[\rho(\theta \cdot x)\rho(\theta' \cdot x)].$$

• In regression, instantaneous potential writes

$$U(\theta; \rho) = -F(\theta) + \int K(\theta, \theta') d\rho(\theta'), \text{ with}$$

$$F(\theta) = \mathbb{E}[y\rho(\theta \cdot x)], K(\theta, \theta') = \mathbb{E}[\rho(\theta \cdot x)\rho(\theta' \cdot x)].$$

- Define the local Hessians $D_i(t) = \nabla^2_{\theta} U(\bar{\theta}_i(t); \nu_t) \in \mathbb{R}^{d \times d}$, $i \in [m]$,
- and the interaction Hessians $H_{i,j}(t) = \nabla_{\theta} \nabla_{\theta'} K(\bar{\theta}_i(t), \bar{\theta}_j(t)) \geq 0$.

• In regression, instantaneous potential writes

$$U(\theta; \rho) = -F(\theta) + \int K(\theta, \theta') d\rho(\theta'), \text{ with}$$

$$F(\theta) = \mathbb{E}[y\rho(\theta \cdot x)], K(\theta, \theta') = \mathbb{E}[\rho(\theta \cdot x)\rho(\theta' \cdot x)].$$

- Define the local Hessians $D_i(t) = \nabla^2_{\theta} U(\bar{\theta}_i(t); \nu_t) \in \mathbb{R}^{d \times d}$, $i \in [m]$,
- and the interaction Hessians $H_{i,j}(t) = \nabla_{\theta} \nabla_{\theta'} K(\bar{\theta}_i(t), \bar{\theta}_j(t)) \geq 0$.
- Coupling errors $\Delta_i(t)$ follow their own particle interaction system:

$$\frac{d}{dt}\Delta_{i}(t) = D_{i}(t)\Delta_{i}(t) - \mathbb{E}_{j}[H_{i,j}\Delta_{j}(t)] + O(\|\Delta_{i}\|^{2}) + O(1/\sqrt{m}).$$

 ∇ , ∇^2 : Spherical Gradient/ Hessian

• In regression, instantaneous potential writes

$$U(\theta; \rho) = -F(\theta) + \int K(\theta, \theta') d\rho(\theta'), \text{ with}$$

$$F(\theta) = \mathbb{E}[y\rho(\theta \cdot x)], K(\theta, \theta') = \mathbb{E}[\rho(\theta \cdot x)\rho(\theta' \cdot x)].$$

$$\frac{d}{dt}\Delta_i(t) = D_i(t)\Delta_i(t) - \mathbb{E}_j[H_{i,j}\Delta_j(t)] + O(\|\Delta_i\|^2) + O(1/\sqrt{m})$$

$$\frac{d}{dt}\Delta_{i}(t) - D_{i}(t)\Delta_{i}(t) = -\mathbb{E}_{j}[H_{i,j}\Delta_{j}(t)] + O(\|\Delta_{i}\|^{2}) + O(1/\sqrt{m}) := -\mathbb{E}_{j}[H_{i,j}\Delta_{j}(t)] + \epsilon_{i}(t)$$

• Key challenge: Local and interaction Hessians do not commute.

$$\frac{d}{dt}\Delta_{i}(t) - D_{i}(t)\Delta_{i}(t) = -\mathbb{E}_{j}[H_{i,j}\Delta_{j}(t)] + O(\|\Delta_{i}\|^{2}) + O(1/\sqrt{m}) := -\mathbb{E}_{j}[H_{i,j}\Delta_{j}(t)] + \epsilon_{i}(t)$$

- Key challenge: Local and interaction Hessians do not commute.
- Viewing the RHS as the source, from Duhamel we have

$$\Delta_i(t) = \int_0^t J_i(t, s)(-\mathbb{E}_j[H_{i,j}\Delta_j(s)] + \epsilon_i(s))ds, \text{ where } J_i(t, s) \text{ solves}$$

$$\Delta_{i}(t) = \int_{0}^{t} J_{i}(t,s)(-\mathbb{E}_{j}[H_{i,j}\Delta_{j}(s)] + \varepsilon_{i}(s))ds, \text{ where } J_{i}(t,s) \text{ solves}$$

$$\frac{d}{dt}J_{i}(t,s) = D_{i}(t)J_{i}(t,s) , J_{i}(s,s) = \mathsf{P}_{\bar{\theta}_{i}(s)}^{\mathbb{S}} \Rightarrow J_{i}(t,s) = \exp\left(\int_{s}^{t} D_{i}(u)du\right).$$

$$\frac{d}{dt}\Delta_i(t) - D_i(t)\Delta_i(t) = -\mathbb{E}_j[H_{i,j}\Delta_j(t)] + O(\|\Delta_i\|^2) + O(1/\sqrt{m}) := -\mathbb{E}_j[H_{i,j}\Delta_j(t)] + \epsilon_i(t)$$

- Key challenge: Local and interaction Hessians do not commute.
- Viewing the RHS as the source, from Duhamel we have

$$\Delta_{i}(t) = \int_{0}^{t} J_{i}(t,s)(-\mathbb{E}_{j}[H_{i,j}\Delta_{j}(s)] + \epsilon_{i}(s))ds, \text{ where } J_{i}(t,s) \text{ solves}$$

$$\frac{d}{dt}J_{i}(t,s) = D_{i}(t)J_{i}(t,s) , J_{i}(s,s) = \mathsf{P}_{\bar{\theta}_{i}(s)}^{\mathbb{S}} \Rightarrow J_{i}(t,s) = \exp\left(\int_{s}^{t} D_{i}(u)du\right).$$

• Local stability matrix $J_i(t, s)$: how a perturbation of $\bar{\theta}_i(s)$ (neuron i's position at time s) affects its position $\bar{\theta}_i(t)$ at future time t.

$$\frac{d}{dt}\Delta_i(t) - D_i(t)\Delta_i(t) = -\mathbb{E}_j[H_{i,j}\Delta_j(t)] + O(\|\Delta_i\|^2) + O(1/\sqrt{m}) := -\mathbb{E}_j[H_{i,j}\Delta_j(t)] + \epsilon_i(t)$$

- Key challenge: Local and interaction Hessians do not commute.
- Viewing the RHS as the source, from Duhamel we have

$$\Delta_{i}(t) = \int_{0}^{t} J_{i}(t,s)(-\mathbb{E}_{j}[H_{i,j}\Delta_{j}(s)] + \epsilon_{i}(s))ds, \text{ where } J_{i}(t,s) \text{ solves}$$

$$\frac{d}{dt}J_{i}(t,s) = D_{i}(t)J_{i}(t,s) , J_{i}(s,s) = \mathsf{P}_{\bar{\theta}_{i}(s)}^{\mathbb{S}} \Rightarrow J_{i}(t,s) = \exp\left(\int_{s}^{t} D_{i}(u)du\right).$$

• Local stability matrix $J_i(t, s)$: how a perturbation of $\bar{\theta}_i(s)$ (neuron *i*'s position at time *s*) affects its position $\bar{\theta}_i(t)$ at future time *t*.

Ingredient 1: Local Strong Convexity

- Let $\xi_t(\theta)$ M-F flow map starting at θ : $\bar{\theta}_i(t) = \xi_t(\theta_i)$.
- Instantaneous potentials $U(\xi_t(\theta); \nu_t)$ are locally strongly convex in a neighborhood of $\mathrm{supp}(\nu^*)$:

 $\exists \tau > 0; \ \nabla^2_{\theta} U(\xi_t(\theta); \nu_t) \succeq C\sqrt{\mathcal{L}(\nu_t)} \mathsf{P}_{\theta}^{\mathbb{S}} \ \text{for dist}(\xi_t(\theta), \text{supp}(\nu^*)) \leq \tau.$

Ingredient 1: Local Strong Convexity

- Let $\xi_t(\theta)$ M-F flow map starting at θ : $\bar{\theta}_i(t) = \xi_t(\theta_i)$.
- Instantaneous potentials $U(\xi_t(\theta); \nu_t)$ are locally strongly convex in a neighborhood of $\mathrm{supp}(\nu^*)$:

 $\exists \tau > 0; \ \nabla^2_{\theta} U(\xi_t(\theta); \nu_t) \succeq C\sqrt{\mathcal{L}(\nu_t)} \mathsf{P}_{\theta}^{\mathbb{S}} \ \text{for dist}(\xi_t(\theta), \text{supp}(\nu^*)) \leq \tau.$

- Implies that ν^* is atomic in current formulation.
- Also exploited in [Chizat'19] [Chen et al.'20] to obtain uniform-in-time, asymptotic (in *m*), PoC.

Ingredient 2: Stability

• Local stability matrix now defined for any initial condition:

$$J_{\theta}(t,s) := \exp\left(\int_{s}^{t} \nabla^{2} U(\xi_{u}(\theta); \nu_{u}) du\right).$$

Ingredient 2: Stability

$$J_{\theta}(t,s) := \exp\left(\int_{s}^{t} \nabla^{2} U(\xi_{u}(\theta); \nu_{u}) du\right).$$

- For a desired convergence time T, we assume:
 - 1. Uniform Stability: $\sup_{s \le t \le T, \theta} ||J_{\theta}(t, s)|| = \text{poly}(d, T),$
 - 2. Average Stability far from convergence:

$$\sup_{s \le t \le T, \theta'} \mathbb{E}_{\theta}[\|J_{\theta}(t, s)H_{\theta, \theta'}(s)\| \cdot \mathbf{1}(\operatorname{dist}(\xi_{t}(\theta), \operatorname{supp}(\nu^{*})) > \tau)] \lesssim \operatorname{poly}(\tau^{-1})/T$$

•

Ingredient 2: Stability

$$J_{\theta}(t,s) := \exp\left(\int_{s}^{t} \nabla^{2} U(\xi_{u}(\theta); \nu_{u}) du\right).$$

- For a desired convergence time T, we assume:
 - 1. Uniform Stability: $\sup_{s \le t \le T, \theta} \|J_{\theta}(t, s)\| = \operatorname{poly}(d, T)$, "Self-concordance" property: $\sup_{s \le t \le T, \theta} \|J_{\theta}(t, s)\| = \operatorname{poly}(d, T), \text{ sharpness } \|D_{\theta}(t)\| \lesssim \|\nabla U(\theta_t, \nu_t)\|$
 - 2. Average Stability far from convergence:

$$\sup_{s \le t \le T, \theta'} \mathbb{E}_{\theta}[\|J_{\theta}(t, s)H_{\theta, \theta'}(s)\| \cdot \mathbf{1}(\text{dist}(\xi_{t}(\theta), \text{supp}(\nu^{*})) > \tau)] \lesssim \text{poly}(\tau^{-1})/T$$
Neurons 'dispersed' before converging

U*
dist Θ(1)

Main Result

- Under local strong convexity and stability, we have quantitative PoC:
- **Theorem** [GWB'25], informal: Assume *LSC* and *Stability* over horizon T, plus technical regularity assumptions. Then whp $\mathscr{E}(\nu_T, \nu_T^{(m)}) \lesssim \frac{\operatorname{poly}(d, T)}{\sqrt{m}}$.

Main Result

- Under local strong convexity and stability, we have quantitative PoC:
- **Theorem** [GWB'25], informal: Assume *LSC* and *Stability* over horizon T, plus technical regularity assumptions. Then whp $\mathcal{E}(\nu_T, \nu_T^{(m)}) \lesssim \frac{\text{poly}(d, T)}{\sqrt{m}}$.
 - If MF converges at horizon T = poly(d), then poly-sized finite net does too.
 - Result extends to empirical risk with additional $O(\sqrt{d/n})$ term.

Main Result

- Under local strong convexity and stability, we have quantitative PoC:
- **Theorem** [GWB'25], informal: Assume *LSC* and *Stability* over horizon T, plus technical regularity assumptions. Then whp $\mathcal{E}(\nu_T, \nu_T^{(m)}) \lesssim \frac{\text{poly}(d, T)}{\sqrt{m}}$.
 - If MF converges at horizon T = poly(d), then poly-sized finite net does too.
 - Result extends to empirical risk with additional $O(\sqrt{d/n})$ term.

When can we verify these assumptions?

Application: Single-Index Models

- Well-specified, Gaussian setting: $x \sim \mathcal{N}(0, I_d)$, $y = \rho(\theta^* \cdot x) + w$,
- ρ :even function with Information-Exponent $k^* \ge 4$.
- **Theorem** [GWB'25]: Let $f_{\nu_t^{(m)}}(x) = \frac{1}{m} \sum_{j \leq m} \rho(\theta_j(t) \cdot x)$ trained with L2-loss on n iid samples for $T = O(\delta^{-k^*+1} d^{k^*/2-1})$. Then if $m \gtrsim d^{13k^*}, n \gtrsim d^{11k^*}$, we have whp $||f_{\nu_T^{(m)}} f^*||^2 = O(\delta^2)$.

Application: Single-Index Models

- Well-specified, Gaussian setting: $x \sim \mathcal{N}(0, I_d)$, $y = \rho(\theta^* \cdot x) + w$,
- ρ :even function with Information-Exponent $k^* \ge 4$.
- **Theorem** [GWB'25]: Let $f_{\nu_t^{(m)}}(x) = \frac{1}{m} \sum_{j \leq m} \rho(\theta_j(t) \cdot x)$ trained with L2-loss on n iid samples for $T = O(\delta^{-k^*+1} d^{k^*/2-1})$. Then if $m \gtrsim d^{13k^*}, n \gtrsim d^{11k^*}$, we have whp $\|f_{\nu_T^{(m)}} f^*\|^2 = O(\delta^2)$.
- $k^* = 2$ violates current stability assumptions; covered in [Damian et al,'22], [Mahankali et al].
- Exploits *self-concordance* of SIM landscapes: $\|\nabla^2 U(\theta)\| \simeq (\theta \cdot \theta^*)^{-1} \|\nabla U(\theta)\|.$

$$\frac{d}{dt}\Delta_i(t) = D_i(t)\Delta_i(t) - \mathbb{E}_j[H_{i,j}\Delta_j(t)] + \epsilon_i(t).$$

$$\frac{d}{dt}\Delta_i(t) = D_i(t)\Delta_i(t) - \mathbb{E}_j[H_{i,j}\Delta_j(t)] + \epsilon_i(t).$$

- Ignoring neuron interactions: exploit uniform stability $\sup_{s \le t \le T, \theta} \|J_{\theta}(t, s)\| = \operatorname{poly}(d, T).$
- Ignoring self-interactions: PSD kernel contracts $\mathbb{E}_i ||\Delta_i(t)||^2$.

$$\frac{d}{dt}\Delta_i(t) = D_i(t)\Delta_i(t) - \mathbb{E}_j[H_{i,j}\Delta_j(t)] + \epsilon_i(t).$$

- Ignoring neuron interactions: exploit uniform stability $\sup_{s \le t \le T, \theta} \|J_{\theta}(t, s)\| = \operatorname{poly}(d, T).$
- Ignoring self-interactions: PSD kernel contracts $\mathbb{E}_i || \Delta_i(t) ||^2$.
- Main challenge: interplay between these terms.
- Coupling dynamics driven by sparse fluctuations \rightarrow 'natural' metric is $W_1(\nu_t^{(m)}, (\nu_t)^{(m)}) \leq \mathbb{E}_i \|\Delta_i(t)\|.$

$$\frac{d}{dt}\Delta_i(t) = D_i(t)\Delta_i(t) - \mathbb{E}_j[H_{i,j}\Delta_j(t)] + \epsilon_i(t).$$

- Ignoring neuron interactions: exploit uniform stability $\sup_{s \le t \le T, \theta} \|J_{\theta}(t, s)\| = \operatorname{poly}(d, T).$
- Ignoring self-interactions: PSD kernel contracts $\mathbb{E}_i ||\Delta_i(t)||^2$.
- Main challenge: interplay between these terms.
- Coupling dynamics driven by sparse fluctuations \rightarrow 'natural' metric is $W_1(\nu_t^{(m)}, (\nu_t)^{(m)}) \leq \mathbb{E}_i \|\Delta_i(t)\|.$
- Near initialisation, dynamics are driven by local term $D_i(t)$, thanks to the average stability assumption (neurons are dispersed before converging).

$$\frac{d}{dt}\Delta_i(t) = D_i(t)\Delta_i(t) - \mathbb{E}_j[H_{i,j}\Delta_j(t)] + \epsilon_i(t).$$

Self-interaction: driven by local Hessian $\nabla^2 U(\theta; \nu_t)$ Interactions: driven by neuron repulsion kernel $\nabla_\theta \nabla_{\theta'} K(\theta, \theta')$ Source term: at Monte-Carlo scale $O(1/\sqrt{m})$

- Near convergence, dynamics are driven by interaction terms $H_{i,j}(t)$:
- **Balanced Interaction Lemma**: If $\mathbb{E}_i \|\Delta_i(s)\|_1$ is small, then interaction dynamics cannot increase it too much:

Let
$$\frac{d}{dt}\Delta = -H\Delta$$
, and consider eigendecomposition $H(\infty) = \sum_{\lambda \in \Lambda} \lambda P_{\lambda}$.
For $t \geq s$, we have $\|\Delta(t)\|_1 \leq \|\Delta(s)\|_1 \sum_{\lambda} \|P_{\lambda}\|_{\infty} = \Theta(\|\Lambda\|) \|\Delta(s)\|_1$.

• Exploited by designing appropriate potential function $\Phi(t)$ that combines interaction at convergence H_{∞} and surrogate quantity of interest $\mathbb{E}_i \|\Delta_i(t)\|$.

Experiments

Name	Target Function	Activation/Network Design	LSC?	Symmetric?	J_{avg} assm?
He_4	$He_4(x^ op e_1)$	$\sigma = He_4$	Yes	Yes	Yes
Circle	$\mathbb{E}_{w \sim \mathbb{S}^1} He_4(x^ op w)$	$\sigma = He_4$	No	Yes	Yes
Misspecified	$0.8 He_4(x^{ op}e_1) + 0.6 He_6(x^{ op}e_1)$	$\sigma = He_4 + He_6$	No	No	Yes
$Random_{6,6}$	He_4 link, 6 random teachers in \mathbb{R}^6	$\sigma = He_4$	Yes	No	Yes?
Staircase	$0.25x_1 + 0.75XOR_4(x_{[4]})$	$\sigma = $ SoftPlus, 2nd layer ± 8	Yes	No	No
XOR_4	$XOR_4(x_{[4]})$	$\sigma =$ SoftPlus, 2nd layer ± 8	Yes	No	?

Experiments

• Misspecified Single-Index Model:

• 4-parity (misspecified Multi-index model):

Next Steps/Questions

Relaxing LSC to allow mis-specified problems

- Establishing stability properties beyond 'self-concordant' SIM-MIM-type problems? BBP-like?
- Effect of step-size: Links between sharpness and velocity related to central flow [Cohen & Damian et al]?
- Relationship with DMFT analysis of fluctuations [Bordelon et al]?
- Links between PoC and scaling laws, beyond linear models [Paquette et al.]?

Thanks!

References:

• Propagation-of-Chaos in Single-Hidden Layer Neural Networks beyond Logarithmic time, with Denny Wu and Margalit Glasgow, COLT 25.

