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Large-scale neural recordings 
Calcium imaging (106 neurons)

Electrophysiology (104 neurons)
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What physical principles underlie efficient neural computation?

How can macroscopic functions arise from microscopic neural interactions?
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Large-scale neural recordings 

Time


Neuron


10 msτ ∼

1

2

3

N
. 
. 
.

(1,-1,-1,1,-1,1,-1,-1,…)

(-1,-1,-1,-1,-1,1,1,1,…)

(-1,1,1,-1,-1,-1,1,-1,…)

(1,-1,-1,-1,1,1,-1,-1,…)

σ ∈ {−1,1}N

At each time:
High-dimensional, 

sparse binary activity

Construct a dataset:

{  , ,  , … }σ(1) σ(2) σ(3)
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Maximum entropy models 

• Mean activities: 
1
T

T

∑
t=1

σ̄ t
i = μexp

i

• Pairwise 
correlations: 

1
T − 1

T

∑
t=1

(σ̄ t
i − μexp

i )(σ̄ t
j − μexp

j ) = Cexp
ij

Consider some microscopic measurements Can we predict macroscopic features ? 

• Structure of interactions

• State probability  P(σ)

Search for the least structured model that matches these statistics Maximum entropy model:

4

i.e., maximize the entropy:    S = − ⟨ln P(σ)⟩ subject to the constraints  (1)   and   (2) 

(1)

(2) 
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Maximum entropy models 

• Mean activities: 
1
T

T

∑
t=1

σ̄ t
i = μexp

i

• Pairwise 
correlations: 

1
T − 1

T

∑
t=1

(σ̄ t
i − μexp

i )(σ̄ t
j − μexp

j ) = Cexp
ij

Consider some microscopic measurements Can we predict macroscopic features ? 

• Structure of interactions

• State probability  P(σ)

Maximum entropy model: P(σ) =
1

Z(J, h)
exp

1
2 ∑

i≤ j

Jij σi σj +
N

∑
i=1

hi σi (non-parametric model)

(But the system is clearly NOT at equilibrium… dynamics is an important next step!)

[Martignon et al. (2000); Schneidman et al. 
(2006); Meshulam et al. (2017, 2024) ; …]
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Maximum entropy models 

• Mean activities: 
1
T

T

∑
t=1

σ̄ t
i = μexp

i

• Pairwise 
correlations: 

1
T − 1

T

∑
t=1

(σ̄ t
i − μexp

i )(σ̄ t
j − μexp

j ) = Cexp
ij

Consider some microscopic measurements Can we predict macroscopic features ? 

• Structure of interactions

• State probability  P(σ)

Maximum entropy model: P(σ) =
1

Z(J, h)
exp

1
2 ∑

i≤ j

Jij σi σj +
N

∑
i=1

hi σi (non-parametric model)

      ∼ N2 ≫ TNStatistical bottleneck:
Parameters 

(Limited to )N ∼ 100! Measurements 

[Martignon et al. (2000); Schneidman et al. 
(2006); Meshulam et al. (2017, 2024) ; …]
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Theory of neural population structures 

 
[ Review:  S. Chung, L. F. Abbott, Current 
opinion in neurobiology, 70, 137-144 ] 

Dynamical untangling (Motor) 

Topology underlying navigation,

state-transition tasks


Perceptual straightening (Vision)

 
[Hénaff, Goris, Simoncelli (2019)]


 
[Russo, Churchland, Abbott (2020)]


 
[Sohn, Jazayeri, et al. (2019)]


Bayesian computation through 
cortical latent dynamics

 
[Low, et al. (2018)]


Disentangling for abstraction tasks 
(Hippocampus, Pre-frontal cortex)

 
[Bernardi, et al. (2021)]


Neural manifold 
capacity

 
[Chung et al. (2018)]


 
(Non-exhaustive list)
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Can we scale max-ent models to large neural systems ?

Can we describe these systems with a small number (  ) 
of collective variables*? 

≪ N

(the “neural manifold hypothesis”)

* “order parameters”, “summary statistics”, …

To what extent are these reduced descriptions captured by a mean-field theory?
Can we leverage these theories to solve efficiently the inverse problem 

of fitting maximum entropy parameters?
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Max-ent on informative collective coordinates

Projections of the neural activity:            given    φα =
N

∑
n=1

Wα
n σn Wα ∈ ℝN , α = 1,…, M ≪ N

Measurements:
• Mean activities: 

1
T

T

∑
t=1

σ̄ t
i = μexp

i

• Pairwise correlations 
among projections: 

P(σ) =
1

Z(Λ, h)
exp

1
2 ∑

α≤β

Λαβ φα φβ +
N

∑
i=1

hi σi

… then, select the most informative directions  (mini-max entropy)W

[Cocco, Monasson, 
Sessak, PRE (2011)]

1
T − 1

T

∑
t=1

(φ̄ t
α − ⟨φ̄ t

α⟩)(φ̄ t
β − ⟨φ̄ t

β⟩) = χexp
αβ

[Lynn et al. (2023),   
 Carcamo & Lynn (2024)]

(  parameters )∼ NM
Maximum entropy model:
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The simplest case: population activity  

• Match the mean and variance of the average firing rate: m =
N

∑
n=1

σn

P(σ) =
1

Z(λ, h)
exp

λ
2N (

N

∑
i=1

σi)
2

+ h
N

∑
i=1

σi
Maximum entropy model:
(Fully-connected ferromagnet)

Mean-field approximation: Z(λ, h) =
N

2πλ
2N ∫ dψ e−N f(ψ) ≃

1
λ f′￼′￼(ψsp)

2N e−N f(ψsp)

Saddle point approximation
f(ψ) =

1
2λ

ψ2 − ln cosh (h + ψ)Local free energy: 
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The simplest case: population activity  

MF approx works

MF approx fails

χmax(μ) =
μ(1 − μ2)

μ − atanh(μ)(1 − μ2)

cannot be described by naive MF approximation .

Experimental susceptibilities above

Retina, ecephys 
( ) [ Tkacik, 
et al. PLoS Comp 
Bio (2014) ]

N ∼ 160

CA1, calcium imaging 
( ) [ Meshulam, 
et al., Neuron (2017) ]
N ∼ 1500

Neuropixels ( single regions: 
, many regions: 

) [ Allen 
Institute (2019) ]

N ∼ 60 − 190
N ∼ 900 − 1500

This bound is systematically violated by 
experimental data.  

10

= ⟨m⟩exp
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The simplest case: population activity  
What went wrong? 
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(A1) (A2) (B) (C)The exact solution of 
the model shows that 
the local free energy 
has two nearly-
degenerate minima.

The difference vanishes as the 
system size grows:  .ΔV ∼ N−1

This model leads to 
fundamentally wrong 
predictions, such as a 
bimodal distribution of 
population activity. 

CA1, calcium imaging 
( ) [ Meshulam, 
et al., Neuron (2017) ]
N ∼ 1500
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Projections of the neural activity:            given    φα =
N

∑
n=1

Wα
n σn Wα ∈ ℝN , α = 1,…, M ≪ N

Measurements:
• Mean activities: 

1
T

T

∑
t=1

σ̄ t
i = μexp

i

• Pairwise correlations 
among projections: 

P(σ) =
1

Z(Λ, h)
exp

1
2 ∑

α≤β

Λαβ

N

∑
n=1

Wα
n σn

N

∑
m=1

Wβ
mσm +

N

∑
i=1

hi σi

1
T − 1

T

∑
t=1

(φ̄ t
α − ⟨φ̄ t

α⟩)(φ̄ t
β − ⟨φ̄ t

β⟩) =

Maximum entropy model:

χexp
αβ

(inverse Hopfield)

Max-ent on multiple projections 

12

MF approximation: ΛMF = ((χexp
0 )−1χexp − I)(χexp

0 )−1 , hMF = atanh(μexp) −
1
N

W⊤ΛMFWμexp
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Measure the information gain with 
respect to the independent model: P0(σ) =

1
Z(h0)

exp (
N

∑
i=1

h0,i σi)

Fluctuations of the 
independent model Fluctuations of 


the pairwise model 

ΔS = S0 − S =
1
2

Tr [χ−1
0 χ − ln(χ−1

0 χ) − 𝕀]
Entropy 
reduction: 

Max-ent on multiple projections 
How do we select the most informative directions ? 

13
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Measure the information gain with 
respect to the independent model: P0(σ) =

1
Z(h0)

exp (
N

∑
i=1

h0,i σi)
ΔS = S0 − S

Entropy 
reduction: =

1
2

Tr [χ−1
0 χ − ln(χ−1

0 χ) − 𝕀]

Eigenvalues of the 
data correlation matrix 

=
1
2

M

∑
α=1

[ρα − ln ρα − 1]By taking  ,


where   are the eigenvectors of 
the data correlation matrix. 

Wα
n = Uα

n / 1 − μ2
n

Uα

Max-ent on multiple projections 
How do we select the most informative directions ? 
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Max-ent on multiple projections 
However: !

1. Random projections are consistent with MF approximation, but uninformative.

°1.0 °0.9 °0.8 °0.7

µmodel

°1.0

°0.9

°0.8

°0.7

µ
ex

p

(A1)

°0.5 0.0 0.5 1.0

¬model ° ¢ £10°5

°0.5

0.0

0.5

1.0

¬
ex

p
°

¢

£10°5

(A2)

100 101

K

10°2

10°1

100

¢
S

[b
it
s]

(B)

°1.00 °0.95 °0.90

m

10°5

10°4

10°3

10°2

P
(m

)

(C) experiment

independent
model

30 projections

χmodel − χ0

χ e
xp

−
χ 0

M

15



Francesca Mignacco Neural subspaces, minimax entropy, and mean–field theory for networks of neurons Page

Max-ent on multiple projections 
However: !

1. Random projections are consistent with MF approximation, but uninformative.

2. Informative projections are inconsistent with MF approximation.
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Max-ent on multiple projections 
However: !

1. Random projections are consistent with MF approximation, but uninformative.

2. Informative projections are inconsistent with MF approximation.

Can we do better ? 

16
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Max-ent on the full distribution of a projection 

Projection of the neural activity:            given    φ =
N

∑
n=1

Wnσn W ∈ ℝN

Ptheory(φ) = ∑
σ

δ (φ −
N

∑
n=1

Wnσn) P(σ) = Pexp(φ)

Measurements:

• Mean activities: 
1
T

T

∑
t=1

σ̄ t
i = μexp

i

• The full distribution of the projection: 

Maximum entropy model: E(σ) = −
N

∑
n=1

hnσn + NU(φ) Fit the potential from 
experimental data.
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Max-ent on the full distribution of a projection 

MF approximation:

UMF(φ) =
1
N [−ln Pexp(φ)−iz*(φ)φ + ∑

n

ln cosh (hn+iz*(φ)Wn)]
hn = atanh(μexp

n )Solve self-consistently:

Z = 2N ∫
dz
2π ∫ dφ e−N f(φ,z) ≃

N≫1
2N e−N f(φsp,zsp)

det ℋf(φsp, zsp)

Local free energy: f(φ, z) = U(φ) +
1
N [izφ −

N

∑
n=1

ln cosh (hn + izWn)]
φ =

N

∑
n=1

Wn tanh (hn + iz*(φ)Wn)
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The MF approximation is consistent 
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CA1, calcium imaging 
( ) [ Meshulam, 
et al., Neuron (2017) ]
N ∼ 1500

principal component of the data correlation matrix.W =

The extended mean-field theory on the projection distribution reproduces the 
maximum-entropy constraints on experimental data.
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Is the model predictive?
Total population activity

2nd principal component

Only marginally better than 
the independent model.

The model reproduces the 
highly non Gaussian right 

tail of the distribution.
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Is the model predictive?

Although pairwise correlations 
are not explicitly constrained, 
the model captures the overall 
trend in the correlation matrix. 

( 1st PC )W =

21
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Which directions are most informative?
Entropy reduction from 
the independent model: ΔS = N (U(φsp) − ⟨U(φ)⟩) +

1
2

ln (NU′￼′￼(φsp) χ0 + 1)
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PC 

eigenvectors of the data correlation matrixW =

The entropy reduction is highest at the boundaries of the spectrum of the neural correlation matrix.  
The 1st PC of the correlation matrix reduces the entropy of approximately 5% of the independent entropy.

Independent entropy 
per neuron  S0/N

Independent entropy 
per neuron  S0/N
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The system is poised near a critical point

Eigenvectors of data 
correlation matrix 
(Lighter = higher )ΔS

Random projections

Random 
positive 

projections

Most informative directions 
describe neural systems close to 
a second order phase transition.
[See e.g.: Meshulam et al (2019); | 
 Meshulam and Bialek (2024)]

Critical line:   NU′￼′￼(φsp) = − χ−1
0
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The system is poised near a critical point
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Most informative directions 
describe neural systems close to 
a second order phase transition.
[See e.g.: Meshulam et al (2019); | 
 Meshulam and Bialek (2024)]

Plausible neural populations (same 
mean activity, weaker correlations) 
are farther away from criticality 
than the real network.

χ−1
0
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Conclusions & perspectives 

• Understanding large neural populations requires scalable methods that avoid 
undersampling relevant statistics. 

• A promising path in this direction involves maximum entropy models constrained on 
informative collective coordinates in neural activity. 

• Naive mean-field theories limited to pairwise correlations in these neural subspaces fail to 
capture the complexity of neural activity. 

• Extending the theory to the full distribution along one informative projection, we obtain 
consistent and accurate models. 

• Expanding this approach to constrain the distribution of neural activity along multiple 
projections is a key next step to advance large-scale neural modeling.  
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