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What physical principles underlie efficient neural computation®

How can macroscopic functions arise from microscopic neural interactions”
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Large-scale neural recordings
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Neuron At each time:

N Tl _|| | H (1,-1,-1,1,-1,1,-1,-1,00) High-dimensional,
sparse binary activity
N
ce {—1.1
3 11 44+ 1111111100 — { ’ }
2+ R H 1,1,1,-1,-1,-1,1,-1,00) Construct a dataset:
: E H b 0T {ot), 60 o), ...}
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Maximum entropy models
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Consider some microscopic measurements Can we predict macroscopic features ?
1 T
. Mean activities: T Z o] = ,MieXp (1) - State probability P(0)
=1
L - Structure of interactions
° PaIrWISG 1 < _ ¢ eEXP\( =1 exp cXp
correlations: 7-1 214 (07 = #7700 = 1;7) = Cij (2)
—
Maximum entropy model: Search for the least structured model that matches these statistics
.., maximize the entropy: S = — <1n P(_G)) subject to the constraints (1) and (2)
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Maximum entropy models
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Consider some microscopic measurements Can we predict macroscopic features ?
- Mean activities: Z 0 — ,u - State probability P(o)
. Pairwise - Structure of interactions

correlations:

1 1
Maximum entropy model: P(o) = exp 2 0, 0; -+ Z h O; (non-parametric model)

[Martignon et al. (2000); Schneidman et al. B Z(J ’ h) 2

(2006): Meshulam et al. (2017, 2024) : .. s

(But the system is clearly NOT at equilibrium... dynamics is an important next step!)
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Maximum entropy models

Consider some microscopic measurements Can we predict macroscopic features ?
1 T
- Mean activities: T 6! = ieXp - State probability P(o)
=1

. Pairwise - Structure of interactions

correlations:

1 T
~t _ ,,eXp\/=t _ ,,€Xp\ — cXp
T_1;<ai u0NE] — ) = C

[Martignon et al. (2000); Schneidman et al.
(20006); Meshulam et al. (2017, 2024) ; ...]

2 o
/A\ Statistical bottleneck: ~N° > IN (Limited to N ~ 100)

Parameters Measurements

1 1 c
Maximum entropy model: P(o) = 70 exXp 5 ; sz 0;0; + lzzl h,o;| (non-parametric model)
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Theory of neural population structures
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Perceptual straightening (Vision)

Perceptual space
Curvature = 4°

L L.

PC1 PC1

[Hénaff, Goris, Simoncelli (2019)]

Pixel-intensity space
Curvature = 39°

PC2
PC2

Dynamical untangling (Motor)

0.5

PC 3

-0.51

@ -

O 0 /\
K
0.5¢

- .
PC 1 : °© PC2
2 0 PC2

[Russo, Churchland, Abbott (2020)]

Bayesian computation through
cortical latent dynamics

14 Set+200 ms

Topology underlying navigation,
state-transition tasks

Population activity

Trajectoryon | A
. NN
manifold

Neuron 3

[Low, et al. (2018)]
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Disentangling for abstraction tasks
(Hippocampus, Pre-frontal cortex)

)
[
)

fi(context, value, ...
fs(context, value, ...

—~

f,(context, valué, ) fi(context, value, ...)

[Bernardi, et al. (2021)]
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Neural manifold
capacity

AY
3 o

B [Chung et al. (2018)]

| Review: S. Chung, L. F Abbott, Current
opinion in neurobiology, 70, 137-144 ]
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Can we scale max-ent models to large neural systems ?

Can we describe these systems with a small number ( << N )
of collective variables™?

(the “neural manifold hypothesis”)

J) Lk

* 1 . . J)
order parameters”, “summary statistics’, ...

To what extent are these reduced descriptions captured by a mean-field theory?

Can we leverage these theories to solve efficiently the inverse problem
of fitting maximum entropy parameters”?

Francesca Mignacco Neural subspaces, minimax entropy, and mean—field theory for networks of neurons



Max-ent on informative collective coordinates
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N
Projections of the neural activity: @, = Z W,?Gn gven W*eRY, a=1,...M<N
n=1
o I —f __ . exp
e Mean activities: T 6, = H.
Measurements: =1
T
e Pairwise correlations 1 _ vvet  onn SXP
among projections: T — 1 Z} B <%>)(¢ﬁ B <(pﬂ>) — )((xﬁ
f—
Maximum entropy model: P(o) = exp Z A @ @+ Z h. o; [Cocco, Monasson,
o NM ore — Z(A h) afp Fa¥p Sessak, PRE (2011)]
~ pararmetlers
. . L - B . |
.. then, select the most informative directions W (mini-max entropy) [Cyanrg;;g éﬁii)(zozél)]
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The simplest case: population activity
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N

* Match the mean and variance of the average firing rate: M = Z Oy
n=1
Maxi . 1 T
aximum entropy model:  p( ;) — exp | — z o, | + h Z ,
(Fully-connected ferromagnet) Z(/, h) 2N i—1 i—1
1

2N e_N f (wSp)

i ' : N N =N f(y)
Mean-field approximation: Z(4,h) = 2% | dy e W ~ -
27/ Q /1]( (l//sp)
Saddle point approximation

1
Local free energy: f(y) = 2—/11//2 — In cosh (h + l//)
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The simplest case: population activity

Neuropixels ( single regions:
N ~ 60 — 190, many regions:

N ~ 900 — 1500) [ Allen
Institute (2019) ]

Retina, ecephys

(N ~ 160) [ Tkacik, | | MF approx fails
O
etal. PLoSComp {5 -

Bio (2014) ]

—Xperimental susceptibilities above

1.0 -
5 o
~ p(l —p)
)(max(//t) — >
05 - u — atanh(u)(1 — u=)
cannot be described by naive MF approximation .
. MF approx works This bound is systematically violated by

1.0 0.9 08 e experimental data.

Hexp = (m)
CAl, calcium imaging exp

(N ~ 1500) [ Meshulam,
et al., Neuron (2017) ]
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The simplest case: population activity

What went wrong?

The exact solution of
the model shows that
the local free energy
has two nearly-
degenerate minima.

This model leads to
fundamentally wrong
predictions, such as a
bimodal distribution of
population activity.

Francesca Mignacco
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CAl, calcium imaging

(N ~ 1500) [ Meshulam,
et al., Neuron (2017) ]

AV \

1071 - \

The difference vanishes as the
system size grows: AV ~ N~
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Max-ent on multiple projections

N
Projections of the neural activity: @, = Z ngn gven W*eRY, a=1,...M<N
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n=1
1 I
_l- _
e Mean activities: T Z 0; = ﬂieXp
Measurements: i—1
e Pairwise correlations - _t s=t\nr=t =1\ _ aSRP
among projections: 7 _ 1 21 ~ @)@y = (Pp)) = )(aﬂ
f—
N
Maximum entropy model: P(o) = Z(A A EXp 2 Nop Z Z W,ﬁam + 2 h. o;

(Inverse Hopfield) a<ﬁ

1
MF approximation: Ay = (()(OXP) P — )()(OXP )~',  hyp = atanh(u®P) — NWTAMFWWXP
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Max-ent on multiple projections

oo
=2 THE
= <

How do we select the most informative directions ?

—> Measure the information gain with

respect to the independent model. Polo) = Z(ho) CXP Zh()z O;
Entropy 1
reduction: AS = S() -8 =—Tr [)(0_1)( — ln(;(o_l)() — |]]

2

Fluctuations of the J (

iIndependent model .
P Fluctuations of

the pairwise model
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Max-ent on multiple projections
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How do we select the most informative directions ?

—> Measure the information gain with
respect to the independent model. Polo) = Z(ho) CXP Zh()z

Entropy
reduction: AS = S() — 95

|
S Tr o —InCg ' ) -1

1 M
5 Z [pa _ lnpa o 1]
a=1

By taking W¢ = U,‘;‘/\/l — Uz

where UY are the eigenvectors of
the data correlation matrix.

Eigenvalues of the
data correlation matrix
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Max-ent on multiple projections

However:

1. Random projections are consistent with MF approximation, but uninformative.
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—0.7 7

60" . i experiment
an —0.8 7 0 _ | independent
3 107 = 10~2 = model
i . - . .

—0.9 - O - — 30 projections
S 9 )
—1.0 1& Q
o 1073 3
-10 —-09 —-08 —0.7 & Q .
e 10—1 - S
Mmodel — - -
" : x,
X10_5 4 1 10—4 -
© 0
10—2 e
i 10—° E
I I I I LR LR o rrrn I I I
—05 0.0 0.5 1.0 109 101 —1.00 —0.95 —0.90
—5
Amodel — A0 x10 M m
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Max-ent on multiple projections

However:

1. Random projections are consistent with MF approximation, but uninformative.
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2. Informative projections are inconsistent with MF approximation.

- 8 5 - N B inconsistent
[ consistent
1.0 - 0
< N
A -4 <
0.5 -
—- 2
0.0 L DTS e L ¢
101 100 10 107+ 10 10°

0 AS |bits|
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Max-ent on multiple projections

However:

1. Random projections are consistent with MF approximation, but uninformative.

2. Informative projections are inconsistent with MF approximation.

Can we do better ?
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Max-ent on the full distribution of a projection
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N
Projection of the neural activity: @ = Z W o, given W € RV

n=1

Measurements:

l

1 T
- Mean activities: ? Z &lf — ﬂ?XP
=1

N
- The full distribution of the projection: Ptheory(qo) = Z ol ¢ — Z W, | Plo) =P exp((ﬂ)
o n=1

experimental data.

N
Maximum entropy model: E((f) — — Z hnan + N U ((p) Fit the potential from
n=1
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Max-ent on the full distribution of a projection
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MF approximation: /=" -

1 Al .
Local free energy:  flg,z) = U(p) N [iZCD — Z In cosh (hn + IZWn):|

n=1

N
@ = Z W, tanh (hn + iz*(ga)Wn)

n=1

Solve self-consistently: h, = atanh(u *P)

1
Uy, (@) = ~ [—ln Peo(@)=iz*(@)e + Z In cosh (hn+iz*(¢)Wn)
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The MF approximation is consistent

W = principal component of the data correlation matrix. CAL, calcium imaging
(N ~ 1500) [ Meshulam,

et al., Neuron (2017) ]

(Sn)model

\ —1.0 —0.9 —0.8 —0.7 —0.6

<Sn>exp

v/ The extended mean-field theory on the projection distribution reproduces the
Maximum-entropy constraints on experimental data.

Neural subspaces, minimax entropy, and mean—field theory for networks of neurons
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Is the model predictive?
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Total population activity

The model reproduces the
highly non Gaussian right
tall of the distribution.

-1.00 -098 -096 —-0.94 =092 —-0.90

(L
10Y A
101 ‘ 2nd principal component
N
SN .
= 10 ’ Only marginally better than
10—3 the independent model.

-5 4 -3 -2 -1 0 1 2 3 4 5 6
@2
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Is the model predictive?
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0.20

0.15 Although pairwise correlations

N are not explicitly constrained,

‘% 010 the model captures the overall

:: 005 trend In the correlation matrix.

~ (W = 1st PC)

0.00
—0.05

—0.05 0.00 0.05 0.10 0.15
(c)
<Sn8m>model
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Which directions are most informative?

Entropy reduction from
the iIndependent model:

W = eigenvectors of the data correlation matrix

10 _
o - Independent entropy
| per neuron Sy/N

5 -

O -

The entropy reduction is highest at the boundaries of the s
The 1st PC of the correlation matrix reduces the entropy o

Francesca Mignacco

PC rank (highest first)

AS' |bits]

2

AS=N (U((ﬂsp) - (U(qﬂ))) +—1n (NU”((psp))(o + 1)
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per neuron S4/N

- Independent entropy

—0.5

T
109

T
101

PC rank (lowest first)
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pectrum of the neural correlation matrix.
- approximately 5% of the independent entropy.
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The system iIs poised near a critical point

@
20 - Critical line: NU(¢gp) = — X :
—igenvectors of data
10 - correlation matrix
2 (Lighter = higher AS) Most informative directions
% ; describe neural systems close to
s> a second order phase transition.
= S [See e.g.: Meshulam et al (2019); |
~0 Random projections Meshulam and Bialek (2024)]
Random —20 -
positive
porojections | |

|
0.05 0.10 0.15
X0
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The system iIs poised near a critical point
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—3 - _1

Critical line: NU"(¢g,) = — x4

Most informative directions
describe neural systems close to
a second order phase transition.

_6 - [See e.g.: Meshulam et al (2019); |
Meshulam and Bialek (2024)]

NUl(dF(SOsp)

Plausible neural populations (same
mean activity, weaker correlations)
are farther away from criticality
than the real network.

| | | |
0.05 0.10 0.15 0.00 0.25 0.50 0.75

X0 fraction of
scrambled spikes
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Conclusions & perspectives
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* Understanding large neural populations requires scalable methods that avoid
undersampling relevant statistics.

* A promising path in this direction involves maximum entropy models constrained on
Informative collective coordinates in neural activity.

* Naive mean-field theories limited to pairwise correlations in these neural subspaces fail to
capture the complexity of neural activity.

e Extending the theory to the full distribution along one informative projection, we obtain
consistent and accurate models.

 Expanding this approach to constrain the distribution of neural activity along multiple
projections is a key next step to advance large-scale neural modeling.
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