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Generative DifoSiOn Sohl-Dickstein et al '15, Ho et al ’20, Song et al ’21, ....

Forward Process

XO ~ Pdata

dX, = f(X) dt + g(1) AW,

Reverse Process (Generative Process)

dX, = (X)) — &> () V log p(X))) dt + g(r) AW,

back in time

Theorem [Anderson ’82]: under mild assumptions, the two processes have the same density p(x).

If we can approximate the score V log p,(x), we can generate new samples (run discretized reverse)!



Score Functions

Assume for simplicity Variance Exploding process dX, = dW,.

We can consider 3 types of score functions s(x) = V, log p,(x)

1. True score function (needs infinite data, typically inaccessible)
si™e(x) = V., log pf™“(x) = V. log jpdammf:) o~ Hlix-l’

2. Empirical score function (gives memorization)

P
sP(x) = V, log pP(x) = V, log Y e HINET

p=1

E~p, . [Ambrogioni 23]

3. NN approximation (trained by denoising score matching objective [Vincent *11])

S;m(x) — NNQ(Xa ) trained on 9 = {‘g‘”}ﬂ Sohl-Dickstein et al ’15, Ho et al ’20, Song et al '21, ....



Empirical Score <-> Associative Memory

 Empirical time-dependent log-density for diffusion:

P
log p,""(x) = log Z e~ 7€ 4 const
u=1

. Energy of Modern Hopfield Network [Ramsauer et al ’20 “Hopfield is All You Need”] [CL, Mézard PRL ’24]

] P ]
ExX)=——10 e X ) 1+ —|xll?
(x) = -~ g(ﬂZ‘; ) ]



Hopfield MOdeI Hopfield, PNAS ‘82

Ising spins 6 € {—1,+ 1}V, energy E(o) = - Z o, J.o. with  J.= —Z EHEH

[image credit Johannes Brandstetter]

Retrieval

No Retrieval

o .
P vk . For i.i.d.
3 ey EF ~ Unif({—1, + 1}7)
ﬂ 3 @ ﬂ E‘% critical capacity is P. ~ 0.14N

[Amit,Gutfreund,Sompolinsky ’85]




Modern Hopfield Model

A 2

1 L 1
E(x) = ——1log Ze’w X))+ —||x]||?
u=1

train input 1 train input 2 train input 3 train input 4 train input 5 train input 6
train input 7 train input 8 train input 9 train input 10 train input 11 train input 12
train input 13 train input 14 train ifput 15 train input 16 train input 17 train input 18
train input 19 train input 20 train input 21 train input 22 train input 23 train input 24

[image credit Johannes Brandstetter]

[Ramsauer et al ’20 “Hopfield is All You Need”]

Exponential capacity!



A Simple Energy DeCOmpOSition CL, Mézard PRL '24

We assume X € R" and P = ¢*" patterns i.i.d. from P, (€.9. Gaussian, spherical, or from
Hidden Manifold Model * = o(Fz*) with intrinsic dimension D, ... ).

1 S 1
Energy: E(x) = — n log( Z o€ .x> + Euxl\z
u=1

1 | P
AE ) EH.
ldentify a signal term and a noise term: P 10g<e X 4 E e’ X)
MZZ

Since the exponents are O(/N), for large N we can write

1 P
E(x)  —max (51 ' X, (D(X)) T 5\\35”2 with DO(x) = %log( 22 e“ﬂ'x>
U=

If ‘g’l wins the competition we have retrieval, since the energy becomes a quadratic form with
minimum in the pattern (reached in 1 GD step).

The noise function ®(X) takes the form of the free energy of a Random Energy Model
[Derrida ’81]. In fact, conditioned on (quenched) X, we have i.i.d. energies ¢/ = — &/ - x.



Single Pattern Retrieval Threshold

1 P
E(X) ~ —Inax (gl * X, (I)(X)) + Euxuz with (I)(X) — %10g( 22 e/i'g'”-x)
U=

Computing the energy in X = ’g’l, we have a simple criterium for retrieval:

IE'I* > ®(E')  Condition for Retrieval

Consider P = e*", ‘H§1H2 = NN, and high-dimensional limit N — 0.
We can compute the REM-Ilike noise contribution:

a+C(4) .
¢a(/1) = |lim l —(I)(gl) — { A T A< /1*((1)
Voo ed(a@) if 1> A(a)

The asymptotic threshold for single pattern retrieval a;(4) is the solution of :

1= ¢, ()

A randomly chosen pattern can be retrieved with high probability if a < a;(4) . Basins of attraction
are extensive (and can compute radius). Also have bounds on all patterns retrieval threshold.
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Phase Diagram

Single Pattern Retrieval. Most memories
correspond to minima of the energy.

All Patterns Retrieval. All memories are
minima of the energy.

Uncondensed phase. No retrieval due to
contributions from exponentially many other
memories in the REM.

Condensed phase. No retrieval due to
sub-exponential number of other
memories.

Gaussian Memories

[Lucibello, Mézard PRL’24]



Back To Diffusion with Empirical Score
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Reverse Process Through Empirical Score

! >
T f) ' 0
. e Same as before ~* Trajectories fall into memories.
e Diffusion + drift to data ; '
: + L emp _.true
manifold. ; | . Dy [p.™, p,"1 > 0.
emp | irue] () . * Traps appear in the : « Collapse time = REM Condensation time (due to BO)
. KL[P; ‘Pt |~ 0. ! dynamical landscape. o P
* The diffusive process is not :  Traps have noinfluenceon : , 1. =0 (8_2Dhidden)
aware of the finiteness of the typical trajectories. '
dataset. : « Need exponentially many datapoints for small -

mitigated by low data-manifold dimension.

» Minimum of Dy, [p;™ | pgual att =1, <1..



Analysis of diffusion with true score function
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Stochastic Localization

e TJarget distribution on RY we want to sample from:

1 partition function, possibly
p(w) = —wyw); Z = |dwy(w) disordered and
/ hard to compute

Consider the process (called Stochastic Localization [Eldan ’13])

dh, = m(h)dt + dB,

2
h-w—5lwl

my(h) = E, [w] Prn(w) & p(w)e

time-varying distribution

Bayesian structure [Montanari, El Alaoui '22][Montanari 23]:
h, ~ tw* + \/;g, w* ~p, g~ N0.,l)

mJ(h,) = E[w*|h] Bayesian denoiser

—> pt,h — 5W* W|th W* ~/ p

[— 0
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Algorithmic Stochastic Localization

 We use Approximate Message Passing (AMP) to estimate the posterior average, following
[Montanari, El Alaoui ’22] [Montanari, El Alaoui, Selke ’23]

* AMP is an iterative algorithm that at the fixed point (provided it converges and converges to
the correct FP) gives the marginals / magnetizations of the system.

 So our ASL scheme to generate a sample is:

* Discretize in time the Stochastic Localization SDE for the field /..
* At each discrete time, run AMP until convergence and obtain the drift m,(/,).

* Integrate the SDE up to some large time 7T and return a sample as w = m(h;).

* For the perceptron problems we will consider, the form of AMP is known as GAMP. It is
conjecturally optimal among polynomial algorithms for this denoising task [Barbier et al’
PNAS ’19].
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Ricci-Tersenghi, Guilhem Semerjian, JSTAT ‘09

Asym ptOtic AnaIySiS Ghio, Dandi, Krzakala, Zdeborova, PNAS ‘24

Straziota, Demyanenko, Baldassi, CL, arxiv ‘25

« The asymptotic (large /N) performance of ASL can be characterized through a free-entropy:

ht
/7 N\
1 y (dw™) J . e
— lim —F 1o dw) e Vi) w—Llwl
b, Vet N w,gJ 7 g l//( ) 1
lim Z5~! = =
s—0
1 li[ ﬁ y i limo,Z" = logZ
= lim —Imlimo, [E J ]//(dw*) l//(dw )e(twjlk‘l' tg)-wa—%nwa” n—0
n-—y.8 a a
N—+o0o0 IN s—=0n—0 i gl

double application of replica trick
(a la [Franz-Parisi '95])
[Straziota, Demyanenko, Baldassi, CL ’25]

* For dense graphical models, the computation reduces to finding a critical point of a function
of few scalar parameters (overlaps). Problem simplified by Nishimori conditions.
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Success and Failure of ASL

Fixed points of AMP are in correspondence with free-entropy maxima.
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Non-Convex Perceptron models

Take M patterns x* ~ /' (0,;) and a margin k € R. The uniform distribution over the solutions of the
constraint satisfaction problem is:

M
pw) < P [ [ucs* > by, s
u=1

W+ xH

JN

stabilities

with priors:

Spherical: P(w) = §(||w||* — N). In this setting we also consider k < 0 for non-convexity [Franz,Parisi ’16]
[Montanari, Zhong, Zhou ’'23].

or

N
Binary: P(w) = H (5(wl- — 1)+ o(w, — 1)). Here we take k = O for simplicity.
i=1

M
We will take N, M — oo at fixed density of constraints a = W
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Solution Space for Binary Perceptron

« Sampling from the uniform distribution fails at any a > (. This is expected since:
* Most configurations are isolated [Huang, Kabashima, PRE ’14].
 Hardness due to Overlap Gap Property [Gamarnik, PNAS21].

* There exist though an algorithmically accessible dense cluster
[Baldassi et al. PRL 15, PNAS ’16,...].

* Efficient solvers exist but their output is not well characterized.

SAT PHASE UNSAT PHASE

24

Easy phase
for solvers

Calg

~ 0.77

Hard phase

X e

~ (0.83



Small epsilon analysis and tilted potential

« For the flat measure, there is always a second peak of the free-entropy at g = 1.

 (Can we find an easy-to-sample distribution on the solution
space”?

 \We add a potential:

M=aN U
WX
p(W) I I I(s# > 0) e PV, st =

u=1 \ﬁv |

» We perform an expansion of ¢(g) around g = 1
and find a condition for removing the second peak:

Need potential at least as singular as
U(s) = — log(s) near s =0 and also ff > 1.

25

P(s)

histogram of stabilities

p=2

Ayq ~ 0.65



r-annealing MCMC for binary perceptron

AMP is very frail (heavy statistical assumptions). Can we devise a MCMC scheme?

MCMC Sweep 1

-al—@ s <0. |

{lﬂ—wﬂ s> 0,
U(s)=1< |

potential U

lim U.(s) = — log(s)
7—0

stability s



r-annealing MCMC for binary perceptron

For the first time we have a simple and robust algorithm for producing diverse and under-control solutions
to the binary perceptron problem.

Lo MCMC U(s) = —sO(—s) T-annealing Lo MCMC U(s) = —log(s) Tt-annealing
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Thanks!
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