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Generative Diffusion 
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Forward Process

dXt = ft(Xt) dt + g(t) dWt

X0 ∼ pdata

Reverse Process (Generative Process)

X̃T ∼ pT T ≫ 1
dX̃t = (ft(X̃t) − g2(t)∇xlog pt(X̃t)) dt + g(t) dW̃t

Theorem [Anderson ’82]: under mild assumptions, the two processes have the same density         .pt(x)

If we can approximate the score , we can generate new samples (run discretized reverse)!∇xlog pt(x)

(back in time)

Sohl-Dickstein et al ’15, Ho et al ’20,  Song et al ’21, ….



Score Functions
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We can consider 3 types of score functions st(x) = ∇x log pt(x)

1. True score function (needs infinite data, typically inaccessible)

2. Empirical score function (gives memorization)

3. NN approximation (trained by denoising score matching objective [Vincent ’11])

strue
t (x) = ∇x log ptrue

t (x) = ∇x log∫ pdata(dξ) e− 1
2t ∥x−ξ∥2

semp
t (x) = ∇x log pemp

t (x) = ∇x log
P

∑
μ=1

e− 1
2t ∥x−ξμ∥2

snn
t (x) = NNθ(x, t)

ξμ ∼ pdata

trained on 𝒟 = {ξμ}μ

[Ambrogioni ’23]

Sohl-Dickstein et al ’15, Ho et al ’20,  Song et al ’21, ….

Assume for simplicity Variance Exploding process .dXt = dWt



Empirical Score  <->  Associative Memory 

• Empirical time-dependent log-density for diffusion:


• Energy of Modern Hopfield Network 
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log pemp
t (x) = log

P

∑
μ=1

e− 1
2t ∥x−ξμ∥2 + const

E(x) = − 1
λ

log(
P

∑
μ=1

eλ x⋅ξμ) + 1
2 ∥x∥2

[Ramsauer et al ’20 “Hopfield is All You Need”] [CL, Mézard PRL ’24]



Hopfield Model
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E(σ) = − ∑
i,j

σi Jij σj with Jij = 1
P

P

∑
μ=1

ξμ
i ξμ

jIsing spins , energy σ ∈ {−1, + 1}N

For i.i.d. 
 


critical capacity is 
ξμ ∼ Unif({−1, + 1}N)

Pc ≈ 0.14N

Retrieval No Retrieval

Hopfield, PNAS ‘82

[image credit Johannes Brandstetter]

c

c c
[Amit,Gutfreund,Sompolinsky ’85]



Modern Hopfield Model

7 [image credit Johannes Brandstetter]

E(x) = − 1
λ

log(
P

∑
μ=1

eλ ξμ⋅x) + 1
2 ∥x∥2

Exponential capacity!

[Ramsauer et al ’20 “Hopfield is All You Need”]



• We assume  and  patterns i.i.d. from  (e.g. Gaussian, spherical, or from 
Hidden Manifold Model  with intrinsic dimension ).


• Energy: 

• Identify a signal term and a noise term: 


• Since the exponents are , for large  we can write 
 
 

• If  wins the competition we have retrieval, since the energy becomes a quadratic form with 
minimum in the pattern (reached in 1 GD step).


• The noise function  takes the form of the free energy of a Random Energy Model 
[Derrida ’81]. In fact, conditioned on (quenched) , we have i.i.d. energies .

x ∈ ℝN P = eαN pdata
ξμ = σ(Fzμ) Dhidden

O(N) N

ξ1

Φ(x)
x ϵμ = − ξμ ⋅ x

A simple Energy Decomposition
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E(x) = − 1
λ

log(
P

∑
μ=1

eλ ξμ⋅x) + 1
2 ∥x∥2

− 1
λ

log(eλ ξ1⋅x +
P

∑
μ=2

eλ ξμ⋅x)

E(x) ≈ − max (ξ1 ⋅ x, Φ(x)) + 1
2 ∥x∥2 Φ(x) = 1

λ
log(

P

∑
μ=2

eλ ξμ⋅x)with

CL, Mézard PRL '24



Single Pattern Retrieval Threshold
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Computing the energy in , we have a simple criterium for retrieval:


Consider , , and high-dimensional limit .  
We can compute the REM-like noise contribution:


 
 
 
 
The asymptotic threshold for single pattern retrieval  is the solution of :


A randomly chosen pattern can be retrieved with high probability if   . Basins of attraction 
are extensive (and can compute radius). Also have bounds on all patterns retrieval threshold.

x = ξ1

P = eαN 𝔼∥ξ1∥2 = N N → ∞

α1(λ)

α < α1(λ)

E(x) ≈ − max (ξ1 ⋅ x, Φ(x)) + 1
2 ∥x∥2 Φ(x) = 1

λ
log(

P

∑
μ=2

eλ ξμ⋅x)with

∥ξ1∥2 > Φ(ξ1) Condition for Retrieval

1 = ϕα1
(λ)

ϕα(λ) = lim
N→∞

1
N

𝔼Φ(ξ1) = {
α + ζ(λ)

λ if λ < λ*(α)
ε*(α) if λ ≥ λ*(α)



Phase Diagram
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• Single Pattern Retrieval. Most memories 
correspond to minima of the energy.  

• All Patterns Retrieval. All memories are  
minima of the energy.  

• Uncondensed phase. No retrieval due to  
contributions from exponentially many other 
memories in the REM.


• Condensed phase. No retrieval due to  
sub-exponential number of other  
memories.  

[Lucibello, Mézard PRL’24]

Gaussian Memories



Back To Diffusion with Empirical Score
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Reverse Process Through Empirical Score
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0T t1 tc
• Diffusion + drift to data 

manifold. 

•  .

• The diffusive process is not 

aware of the finiteness of the 
dataset. 

DKL[pemp
t |ptrue

t ] ≈ 0

• Trajectories fall into memories. 

•  .

• Collapse time = REM Condensation time (due to BO)


• 


• Need exponentially many datapoints for small , 
mitigated by low data-manifold dimension.


• Minimum of  at  .

DKL[pemp
t , ptrue

t ] ≫ 0

tc = O (e− log P
2Dhidden )

tc

DKL[pemp
t |pdata] t = tg < tc

• Same as before  
+


• Traps appear in the 
dynamical landscape.


• Traps have no influence on 
typical trajectories.
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Analysis of diffusion with true score function



Stochastic Localization
• Target distribution on  we want to sample from: 


• Consider the process (called Stochastic Localization [Eldan ’13])


• Bayesian structure [Montanari, El Alaoui ’22][Montanari ’23]: 

ℝN
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p(w) = 1
Z

ψ(w); Z = ∫ dw ψ(w)
partition function, possibly 

disordered and 

hard to compute

dht = mt(ht)dt + dBt

h0 = 0

ht ∼ tw⋆ + tg, w⋆ ∼ p, g ∼ 𝒩(0,IN)

mt(ht) = 𝔼[w⋆ |ht] Bayesian denoiser

pt,h(w) ∝ p(w) eh⋅w− t
2 ∥w∥2

mt(h) = 𝔼pt,h
[w]

time-varying distribution
pt,h

t→∞
δw⋆ with w⋆ ∼ p



Algorithmic Stochastic Localization

• We use Approximate Message Passing (AMP) to estimate the posterior average, following 
[Montanari, El Alaoui ’22] [Montanari, El Alaoui, Selke ’23]


• AMP is an iterative algorithm that at the fixed point (provided it converges and converges to 
the correct FP)  gives the marginals / magnetizations of the system.


• So our ASL scheme to generate a sample is:


★Discretize in time the Stochastic Localization SDE for the field .


★ At each discrete time, run AMP until convergence and obtain the drift . 


★ Integrate the SDE up to some large time  and return a sample as .


• For the perceptron problems we will consider, the form of AMP is known as GAMP. It is 
conjecturally optimal among polynomial algorithms for this denoising task [Barbier et al’ 
PNAS ’19].

ht

mt(ht)

T w = mT(hT)
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Asymptotic Analysis

• The asymptotic (large ) performance of ASL can be characterized through a free-entropy:  
 
 
 
 
 

• For dense graphical models, the computation reduces to finding a critical point of a function 
of few scalar parameters (overlaps). Problem simplified by Nishimori conditions. 

N
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Ghio, Dandi, Krzakala, Zdeborová, PNAS ‘24
Straziota, Demyanenko, Baldassi, CL, arxiv ‘25

Ricci-Tersenghi, Guilhem Semerjian, JSTAT ‘09

= lim
N→+∞

1
N

lim
s→0

lim
n→0

∂n 𝔼ψ,g ∫
s

∏
α=1

ψ (dw⋆
α )

n

∏
a=1

ψ (dwa) e(tw⋆
1 + tg)⋅wa− t

2 ∥wa∥2

ϕt = lim
N→+∞

1
N

𝔼ψ,g ∫
ψ (dw⋆)

Z
log∫ ψ (dw) e(tw⋆+ tg)⋅w− t

2 ∥w∥2

double application of replica trick 
(à la [Franz-Parisi ’95]) 

[Straziota, Demyanenko, Baldassi, CL ’25] 

lim
s→0

Zs−1 = 1
Z

lim
n→0

∂nZn = log Z

ht



Success and Failure of ASL
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q = 1
N

w⋆ ⋅ w

Success Failure

Fixed points of AMP are in correspondence with free-entropy maxima.



Non-Convex Perceptron models
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Take  patterns  and a margin . The uniform distribution over the solutions of the 
constraint satisfaction problem is:


with priors:


Spherical: . In this setting we also consider  for non-convexity [Franz,Parisi ’16]
[Montanari, Zhong, Zhou ’23].


or


Binary: . Here we take  for simplicity.


We will take  at fixed density of constraints . 

M xμ ∼ 𝒩(0,IN) κ ∈ ℝ

P(w) = δ(∥w∥2 − N) κ < 0

P(w) =
N

∏
i=1

(δ(wi − 1) + δ(wi − 1)) κ = 0

N, M → ∞ α = M
N

p(w) ∝ P(w)
M

∏
μ=1

𝕀(sμ ≥ k), sμ = w ⋅ xμ

N
stabilities



Spherical Perceptron with negative margin
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κ = − 2.5

failuresuccess

ϕt(q) Straziota, Demyanenko, Baldassi, CL, arxiv ‘25



Solution Space for Binary Perceptron

24 ≈ 0.77 ≈ 0.83for solvers

• Sampling from the uniform distribution fails at any . This is expected since:


• Most configurations are isolated [Huang, Kabashima, PRE ’14]. 


• Hardness due to Overlap Gap Property [Gamarnik, PNAS’21].


• There exist though an algorithmically accessible dense cluster  
[Baldassi et al. PRL ’15, PNAS ’16,…]. 


• Efficient solvers exist but their output is not well characterized.

α > 0



Small epsilon analysis and tilted potential

• For the flat measure, there is always a second peak of the free-entropy at .


• Can we find an easy-to-sample distribution on the solution  
space?


• We add a potential: 
 

.


• We perform an expansion of  around  
and find a condition for removing the second peak:  
 
    Need potential at least as singular as 
     near   and also .  

q = 1

p(w) ∝
M=αN

∏
μ=1

𝕀(sμ ≥ 0) e−βU(sμ), sμ = w ⋅ xμ

N

ϕt(q) q = 1

U(s) = − log(s) s = 0 β > 1

25

β = 2

β = 2, α = 0.3histogram of stabilities

αASL ≈ 0.65



-annealing MCMC for binary perceptronτ
AMP is very frail (heavy statistical assumptions). Can we devise a MCMC scheme?
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Uτ(s) =
1
τ (1 − sτ) s > 0,
1
τ (1 − s) s ≤ 0.

lim
τ→0

Uτ(s) = − log(s)



-annealing MCMC for binary perceptronτ
For the first time we have a simple and robust algorithm for producing diverse and under-control solutions 
to the binary perceptron problem.
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num sweeps = 100

num sweeps = N

Straziota, Demyanenko, Baldassi, CL, arxiv ‘25
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Thanks!

Luca Ambrogioni Beatrice Achilli Marc Mézard Enrico Ventura

Davide StraziotaCarlo Baldassi Elizaveta Demyanenko


