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Feature Learning Effects of power law 
distributed data 
Howard et. al. Wilsonian RG of NNGPs  (2025) 
Gorka et. al. RG flows, Universality and Irrelevance 
in Overparametrized Deep Neural Networks (TBP)   



Theoretical Questions  

• What is the sample complexity for various stylized tasks.  

• What are the internal representation generate by a neural network, what is their implicit 
bias? 

• How much learning is happening through Gaussian Processes like interpolations and how 
much through circuits/algorithmic-toolkits? 

• How to predict the scaling behaviors of network performance? Does scaling imply 
universality?  



Internal Representations in the Wild 
• Network Compression/Pruning: Reducing weight to keep pre-activation PCA  

• Sub-networks, Circuits 

• Mechanistic Interpretability: Mono-semantic and Poly-semantic features 
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Theoretical Approach for Rich Learning

• Saad and Sola like approaches   

• Sequence multi-index model + ERM  

• Deep Linear Networks 

• Kernel-Scaling  

• Kernel-Adaptation (Bayesian)  

• DMFT for deep networks  

• Rainbow networks



Kernel Adaptation and its Variants 
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• Statistical mechanics works by re-casting partition functions in terms of order-parameters 
and treating those using mean-field/saddle-point  

• Kernel Adaptation uses pre-activation covariance matrix as order-parameters (as well as 
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f(x) =
N

∑
c=1

acErf(wc ⋅ x) y(x) = w* ⋅ x + 0.1He3(w* ⋅ x)

Kernel Adaptation - GFL and Specialization
GFL phase Specialization phase

Rubin, Seroussi, Ringel (ICLR 2023)

π[w, f ] ≈ π[w]π[ f ]

S = − log (∫ dw⊥π[w ⋅ w*, w⊥]) Similar transition for modular grokking
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Kernel Adaptation - Some New Results
• Small Ridge, Generalization, and Sample Complexity changes within GFL

https://arxiv.org/abs/2502.18553
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(Borges again) 

Limitations 

• Dimension of non-linear equations grows as the number of kernel-eigenfunction 
components in the target 

• Requires detailed knowledge of the input data-distribution.  

• More than 3 trainable layers gets quite tedious (apart from linear or nearly linear activations)  

• Non-quadratic losses require further approximations  
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• Dimension of non-linear equations grows as the number of kernel-eigenfunction 
components in the target 

• Requires detailed knowledge of the input data-distribution.  

• More than 3 trainable layers gets quite tedious (apart from linear or nearly linear activations)  

• Non-quadratic losses require further approximations  Equations for GFL in 3-layer network 



A Heuristic Approach to Sample Complexity and Feature Learning

N. Rubin, O. Davidovich, Z. Ringel ; Patterns in Feature Learning and Their Sample Complexity (TBP) 



Alignment ( ) as a control parameter instead of dataset size (P)A

Sidelining overfitting effects which are often benign1— P and learnability can 
both be viewed as control parameters on feature learning.  

Similar “posterior” for both….

Posteriors can be seen as skewing the prior towards rare events — enter Large Deviation Theory 

πP[w1, . . , wL] ∝ P[w1, . . , wL]exp
P

∑
μ=1

( fμ − yμ)2

2κ2

πAP
[w1, . . , wL] ∝ P[w1, . . , wL]δϵ (∫ dμx f(x)y(x) − AP)

1. Benign Overfitting in Linear Regression (2019); Canatar et. al. (2020);

Prior



Large Deviation Theory (LDT) 101 
• A tool to analyze tails of a random variable 

typically written as sum of many (N) RV. Can 
also be seen as finite-N corrections to the 
Center Limit Theorem   

•
Consider  

which tends to  

• However each  variable has an 

 

• LDT systemizes such computations via 
saddle-points and auxiliary tilt variables 

A =
1

N

N

∑
c=1

a3
c

15
ac ∼ 𝒩[0,1]

A ∼N→∞ 𝒩[0,1]

(a3
c )

log(P(a3
c > > 1)) ∝ a−2/3

c

One “Specialized”  ac ≫ 1 Many  ac > 0



Feature learning as Large Deviation: a Toy Network Example  

• Problem setup, the alignment integral 

• We get a classical LDT problem: What rare-event/Pattern in a’s and 
w_1’s can generate an A=1 “event” ? 

• The LDT equations turn out to be identical to Kernel Adaptation at 
large ridge

f(x) =
N

∑
c=1

acErf(wT
c x) x ∈ Rd, ac ∼ 𝒩[0,N−1], wc ∼ 𝒩[0,d−1] y(x) = He3(x1)

A = ∫ dμx f(x)He3(x1) =
N

∑
i=1

ai
[wi]3

1

(1 + 2[wi]2
1 + 2 | ⃗w′￼i |

2 )3/2
≈

N

∑
i=1

ai
[wi]3

1

(3 + 2[wi]2
1)3/2

GP

Spec.



LDT weight configuration according for  compared to experimentA

• Result from solving LDT/Kernel-Adaptation-at-large-ridge equations — an A=1 event is 
dominate by a pattern of O(1) specializing neurons

A ≈
N

∑
i=1

ai
[wi]3

1

(3 + 2[wi]2
1)3/2



Re-driving specialization result from heuristic 
• Recall that  

• For , what is the most likely weight configuration which gives  ? 

• Pattern I - O(1) w’s specialize, O(1) a’s specialize on the specialized w’s 
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• Pattern II - w’s remain GP like, a’s perform GPR on Random Features generate by w’s    

• Pattern III - all w’s inflate their variance along  by , a’s do a GP the random features generated by those w’s     

−log (
P(wtyp, aGP)
P(wtyp, atyp) ) ∝ d3

̂x1 β

−log ( P(wGFL, aGP)
P(wtyp, atyp) ) ∝ Nβ + ( d

β )
3

⇒optimize β ∝ (Nd)3/4
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From P(A) to sample complexity 
Can we related the chance of a rare- -event in the prior to dataset-size? A

−log(P(A ≈ 1) ∝ − log ( P(wSP, aSP)
P(wtyp, atyp) ) ∝ d + N Number of samples ( ) required  

to reach 
P

A

?



From P(A) to sample complexity 

• Unlearnability bound:  is necessary to have learning where  

• One line derivation  

•

P > P* P* ∝ − log(P[A ≈ 1])

π(A ≈ 1) =
∫ dwdaδϵ(⟨ f |y⟩x − 1)P(w, a)e−∑P

μ=1 L(xμ)

∫ dwdaP(w, a)e−∑P
μ=1 L(xμ)

<
∫ dwdaδϵ(⟨ f |y⟩x − 1)P(w, a)

∫ dwdaP(w, a)e−∑P
μ=1 L(xμ)

<Jensen = P(A ≈ 1)e ∑P
μ=1 ⟨L(xμ)⟩P(w,a)

Can we related the chance of a rare- -event in the prior to dataset-size? A

−log(P(A ≈ 1) ∝ − log ( P(wSP, aSP)
P(wtyp, atyp) ) ∝ d + N Number of samples ( ) required  

to reach 
P

A

?



Quick Ad: The Lazy Case - Data agnostic GP unlearnability bounds

• Colored Shaded Areas - Analytical predictions for around 65% learnability, matches where 
actual test learnability riches that regime. Lavie, Ringel https://arxiv.org/abs/2406.02663

log(Aλ ≈ 1) = λ−1 Aλ = ∫ dμx f(x)ϕλ(x) ∫ dμx′￼
K(x, x′￼)ϕλ(x′￼) = ϕλ(x)



Towards building a heuristic scaling argument 

Summarizing Qualitative Lessons 

•  

• The networks weight arrangements according to the prior, conditioned on  are close to those in 
the posterior for P large enough to generate  

• Feature Learning Pattern is given by the most likely weights which generate the unlikely  ;  

• These often split layer-wise into few distinct patterns [GP,Specialization,GFL] which can be compared 
based on their log-prob.  

• This most likely pattern can be translated into a bound/estimate on dataset size 

• Almost agnostic to training set measure

P* ≳ − log(P(A ≈ 1)) A = ∫ dμx f(x) ̂y(x) P(A) = ∫ dwdaP(w, a)δ (∫ dμx fw,a ̂y − A)
A ≈ 1

A ≈ 1

A ≈ 1



Applying the Pattern Scaling 
Heuristic on several more examples

• Choose [GP,Specialization,GFL] for each layer  
• Estimate layer-wise log prob. using excess-weight-decay/GP-on-random-

features-of-previous-layer 

• Sum those up to get tentative  
• Optimize free-parameters  
• Choose winning pattern  

• Sample complexity scales as  

P*

P*



Recall again our CNN results
• Small Ridge, Generalization, and Sample Complexity changes within GFL

x1x1x1 x2x2
x1x1

f(x) =
N,C

∑
i=1,c=1

aicσ (hi,c(x)) N ∝ S ∝ C ∝ d

h1 h2

x2x2h3

x1 x2 x3 x1 x2 x3 x1 x2 x3

f

hi,c(x) = wc ⋅ [xS(i−1), . . , xSi]

y(x) =
N

∑
i=1

a*i σ (w* ⋅ [xS(i−1) . . . XSi])



Pattern scaling analysis 
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Pattern scaling analysis 

P* ∝ − log ( P(wGFL, aGP)
P(wtyp, atyp) ) ∝ Cβ +

d
β

⇒optimize β ∝ d3/4

−log ( P(wSP, aSP)
P(wtyp, atyp) ) ∝ S + NC ∝ dC ∝ d

P(w, a) ∝ e−S|w|2−NC|a|2

Pattern I - one  and one  specialize to teacheraic wc

Pattern II - first layer increases its variance along  by  w* β

f(x) =
N,C

∑
i=1,c=1

aicσ (hi,c(x)) N ∝ S ∝ C ∝ d y(x) =
N

∑
i=1

a*i σ (w* ⋅ [xS(i−1) . . . XSi])



Pattern scaling analysis 

P* ∝ − log ( P(wGFL, aGP)
P(wtyp, atyp) ) ∝ Cβ +

d
β

⇒optimize β ∝ d3/4

−log ( P(wSP, aSP)
P(wtyp, atyp) ) ∝ S + NC ∝ dC ∝ d

P(w, a) ∝ e−S|w|2−NC|a|2
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Pattern II - first layer increases its variance along  by  w* β
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N,C
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N
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Scenarios for simplified transformer learning complex attention patterns

f(x) =
1

L

L

∑
a,b=1

e−[xa]T Axb

∑c e−[xa]T Axc (w ⋅ xb)

y(x) =
1
L ∑

a,b

xa
1 xa

2 xb
3 x ∈ RL×d

P* ∝ L

Winning Pattern 
A12 = A21 = ϵ; w3 = ϵ−1



Patterns for a 3-layer FCN learning He3

f(x) =
N2

∑
c=1

acErf(hc(x)) hc(x) =
N1

∑
j=1

VcjErf(wj ⋅ x) y(x) = He3(x) N1 ∝ N2 ∝ d
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All scale as d 

No clear winner
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Predicting changes in feature learning pattern as  grows N1

M1 M2

y(x) = He3(x) N1 ∝ N2 ∝ df(x) =
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∑
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Assign [GP,Specialization,GFL] to each layer => estimate layer-wise log prob. => sum those up 

Summary of Verified Heuristic Results 

• P=d sample complexity for y=He3(x_1)  and how specialization wins over GFL in 2-layer Erf 
FCN 

• P=d^{3/4} sample complexity for “wide” CNN with single index teacher and how GFL wins 
over specialization  

• P=d sample complexity for y=He3(x) in 3-layer Erf FCN, scaling of the specializing neurons 
with width’s, and transition between two feature learning patterns  

• P=Context-length^{1/2} sample complexity for a soft-max attention model learning a two-
sequence-index target.  



Renormalization group flows of neural networks 
 under gradual removal of high RKHS subspaces 

Howard et. al. Wilsonian RG of NNGPs  (2025) 
Gorka et. al. RG flows, Universality and Irrelevance in Overparametrized Deep Neural Networks (TBP)   



Self-similarity and power-law scaling
Critical 2d Ising Model

⟨s(0)s(x)⟩ ∝
1
xγ

https://www.youtube.com/watch?v=fi-g2ET97W8
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Self-similarity and universality 

• In a nut-shell: Microscopic information is loss over so many length scales however, due to 
self-similarity, the macroscopic phenomena remains the same.  

• In detail: Wilsonian RG, integration-out high wavelength physics, re-scaling, relevant and 
irrelevant operators. 



Evidence for self-similarity and 
universality in deep learning



Robustness based evidence 

• Large models are quite robust (i.e. 2-3% changes) following:  

• Changes to loss functions between MSE loss, L1 loss, cross entropy loss 

• Changes to architecture within the same symmetry classes. 

• Changes to training algorithm (Large/small batch SGD, SGD with Momentum, Adam 
etc.. though training speed can be highly affected) 

• Changes to hyper-parameters such as weight decay, layer widths, learning rates.



Self-similarity based evidence - data shows power laws 

• Zipf’s law  

• Kernel spectra (generalized PCA) of real world data 



Self-similarity based evidence - performance shows power laws 



Self-similarity, Power-laws, RG, Universality, Complex data…

Towards a scaling theory of DNNs

• Power-laws are very common in deep learning and in self-similar physical systems. 

• However while self-similarity implies power-laws, the converse is less clear — in particular it 
requires a notion of scale and coarse graining, namely RG.   

• Establishing a useful notion of RG on deep learning can relate power-laws to self-similarity 
and to the theoretical holy-grail of universality.
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SGP[ f(x)] =
Λ

∑
k=1

λ−1
k f2

k + r∫ dμx( f(x) − y(x))2 + u∫ dμx( f(x) − y(x))4 λk = k−1−α

Not a  flow! No WF fixed pointϕ4



Summary

M1 M2

• Harder + real-world data + connection with Mech. Int.  
• Implicit bias of feature learning in deeper networks 
• Sparsity effects and interaction between features 
• Overfitting patterns 


