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Complexity of gradient-based learning

▶ Source distribution (y; x) � D over Y � X :

Goal: fit a predictor f : X ! R that minimizes a population loss

LD(f) := E(y;x)�D[`(y; f(x))]:

▶ Modern approach: SGD (or variants) on parametrized model f : X �W ! R

W t+1 = W t �rW `(yt; f(xt;W
t))

High-dim dynamics

▶ A major theme of modern ML/statistics: computational bottlenecks

Computational-to-statistical gaps.
Sample-runtime trade-offs.
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What are the fundamental limits of learning with gradient-based algorithms?

▶ Goal: make some (modest) progress on this question. Ideally, the theory should:

■ explain some of the empirical phenomenology
■ describe some of the stat/computational trade-offs of gradient algo...
■ ...while capturing some fundamental hardness properties (not be too

sensitive to design choices or hyperparameters).

▶ Here, we focus on a specific property of ‘generic’ gradient-type algorithms:

Equivariance with respect to a large symmetry group.
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Equivariant algorithms

▶ Source distribution (y; x) � D over Y � X . Goal: fit a predictor f : X ! R
that minimizes a population loss

LD(f) := E(y;x)�D[`(y; f(x))]:

▶ Learning algorithm A takes source D and outputs a predictor A(D) : X ! R

RD(A) = EA[LD(A(D))] = EA
h
E(y;x)�D[`(y;A(D)(x))]

i
:

▶ Group G of transformations g : X ! X
Dg distribution of (y; g � x) with (y; x) � D.

▶ A is G-equivariant if for all g 2 G

A(Dg) � g d
= A(D):

E.g., SGD on FCNNs with Gaussian initialization: rotationally equivariant.
Adam/AdaGrad/`1-norm: permutation equivariant.
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Orbit class of distributions

▶ If A is G-equivariant:

RDg (A) = EA
h
E(y;x)�D[`(y;A(Dg)(g � x))]

i
= RD(A); 8g 2 G:

▶ A learns D iff it learns the entire orbit

D[G] := fDg : g 2 Gg:

▶ Learning D[G] () Learning D with G-equivariant algos.

■ Lower bound =) lower bound on learning D with G-equivariant algo.
■ Upper bound =) algo can be randomized to make it G-equivariant.

What is the complexity of learning D[G]?

▶ Previous works have exploited equivariance to show LBs on optimization algo
[Ng, ’04], [Shamir, ’18], [Li, Zhang, Arora, ’21], [Abbe, Boix-Adsera, ’22]
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Our work
Group-theoretic characterization of the complexity of learning D[G].

▶ Outline:

■ Most of the talk: the example of learning single-index models.

■ Learning multi-index models.

■ Weak learning of D[G].
■ Strong learning of D[G].
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1 Learning Single-Index Models
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Gaussian Single-Index Models

▶ Distribution D := Dw� indexed by w� 2 Sd�1

(y;x) � D : x � N(0; Id); yjx � �(�jhw�;xi):

▶ Consider G = Od the orthogonal group in d-dimension: for g 2 Od,

(y;x) � Dg : x � N(0; Id); yjx � �(�jhg �w�;xi);

so that Dg
w� = Dg�w� .

▶ Od-equivariant algorithms learn Dw� if and only if they learn

D[Od] = fDw : w 2 Sd�1g:

..., [Barbier, Krzakala, Macris, Miolane, Zdeborova,’19], [Mondelli, Montanari,’18], [Lu,
Li,’20], [Ben Arous, Gheissari, Jagannath,’21], [Mousavi-Hossein, Park, Girotti, Mitliagkas,
Erdogdu,’22], [Bietti, Bruna, Sanford, Song, ’22], [Veiga, Stephan, Loureiro, Krzakala,
Zdeborova,’22], [Damian, Nichani, Ge, Lee, ’23], [Damian, Pillaud-Vivien, Lee, Bruna, ’24],
[Lee, Oko, Suzuki, Wu,’24], [Arnaboldi, Dandi, Krzakala, Loureiro, Pesce, Stephan,’24],
[Chen, Wu, Lu, Yang, Wang, ’24], .... 8



Learning Gaussian SIMs
Given m iid data (yi;xi) � D:

(y;x) � D : x � N(0; Id); yjx � �(�jhw�;xi);

for some unknown w�, compute ŵ such that with probability at least 1� �,

jhw�; ŵij � 1� ": (?)

▶ What are the optimal

m : sample-size and T : runtime

to solve (?)?

■ Information theoretically m = �(d=") is always optimal. In this talk:

sample-optimal = optimal sample-size to solve (?) in polynomial time.
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Sharp characterization

▶ [Barbier et al.,’17], [Lu, Li,’17], [Mondelli, Montanari,’18] (k? = 1; 2)
[Damian, Pillaud-Vivien, Lee, Bruna,’24] (k? � 3)

m = �d(d
max(k?=2;1)); T = e�d(d

max(k?=2;1)+1):

where k? = “generative exponent” of �. (SQ and LDP lower bounds.)

▶ Several works have progressively close the gap to these optimal rates (k? � 2):

■ Online SGD [Ben Arous, Gheissari, Jagannath, ’21]:

m = e�d(d
k?�1); T = e�d(d

k?):

■ Landscape smoothing [Damian, Nichani, Ge, Lee,’23]:

m = e�d(d
k?=2); T = e�d(d

k?=2+1):

■ Partial trace estimator [Damian, Pillaud-Vivien, Lee, Bruna,’24]:

m = �d(d
k?=2); T = e�d(d

k?=2+1):
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Online SGD algorithm
▶ [Ben Arous, Gheissari, Jagannath, ’21] Online SGD on population loss

L(w) =
1

2
E(y;x)�Pw�

h�
y � �(hw;xi)

�2i
▶ Information exponent:

kI := argminfk � 1 : �k(y) = E�[Y Hek(G)] 6= 0g:

So that L(w) = L� ��(hw;w�ikI).

▶ Initialization w0 � Unif(Sd�1), we have hw�;rL(w0)i = �d;P(d
�(kI�1)=2).

▶ [Ben Arous, Gheissari, Jagannath, ’21] # of SGD iterations (= # of samples)

m =

�
�(d) if kI = 1;e�(dkI�1) if kI > 1:

Total runtime: T = �d(md) = e�d(d
max(kI;2)).

11



Generative exponent

▶ Are m = e�d(d
max(kI�1;1)) and T = e�d(d

max(kI;2)) optimal to learn SIM?

▶ We can do much better if we:

■ Reuse samples [Dandi, Troiani, Arnaboldi, Pesce, Zdeborová, Krzakala,’24],
[Lee, Oko, Suzuki, Wu,’24], [Arnaboldi, Dandi, Krzakala, Loureiro, Pesce,
Stephan,’24]

■ Change loss function [Joshi, M., Srebro, ’24]

■ Apply a transformation T (y) to the label [Damian, Pillaud-V, Lee, Bruna,’24]

▶ [Damian, Pillaud-Vivien, Lee, Bruna,’24] Generative exponent of �:

k? := argminfk � 1 : 9T : Y ! R; �k(T (y)) = E�[T (Y )Hek(G)] 6= 0g;

and showed that (optimal within SQ and LDP):

m = �d(d
max(k?=2;1)); T = e�d(d

max(k?=2;1)+1):
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Online SGD algorithm suboptimal

▶ Online SGD on L(w) = 1
2
E[(T (y)� �(hw;xi))2]:

m = e�d(d
max(k?�1;1)); T = e�d(d

max(k?;2)):

▶ Suboptimal compared to m = �d(d
max(k?=2;1)) or T = e�d(d

max(k?=2;1)+1).

■ Changing loss will not help.

■ Reusing samples unlikely to help (bad local minima [M., Saeed, Zhu,’25]).

Why is SGD suboptimal here?
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Landscape smoothing

▶ [Damian, Nichani, Ge, Lee,’23] modified this algo using landscape smoothing,
from tensor PCA [Biroli, Cammarota, Ricci-Tersenghi,’20]

▶ Online SGD on population loss

L�(w) := Eu�Unif(Sd�1)

�
L
�

w + �u

kw + �uk2
��

where � = d1=4 and L(w) = 1
2
E[(T (y)� �(hw;xi))2].

▶ This modification achieves (near-)optimal complexity:

m = e�d(d
k?=2); T = e�d(d

k?=2+1):

Why does this modification achieve optimal complexity�?

Why dk?=2+1 versus dk? runtime complexity?

(�Note that this algo fails on a slightly modified SIM)
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Partial trace of Hermite tensor

▶ [Damian, Pillaud-Vivien, Lee, Bruna,’24] achieved m = �(dk?=2) using partial
trace of an Hermite tensor (again from tensor PCA [Hopkins et al.,’16]).

▶ Construct an empirical tensor

T̂ :=
1

m

X
i2[m]

T (yi)Hek?(xi) 2 (Rd)
k? (s.t., E[T̂ ] = cT ;k? �w
k?
� )

and take partial trace (here for k? even):

ŵ = argmin
kuk2=1

uTM̂u; M̂ = T̂ [I

(k?=2�1)
d ] 2 Rd�d:

▶ Achieves
m = �d(d

k?=2); T = e�d(d
k?=2+1):

Why does partial trace achieve optimal complexity�?

Why dk?=2 sample complexity?

(�Note that this algo fails on a slightly modified SIM)
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Summary

▶ [Damian, Pillaud-Vivien, Lee, Bruna,’24] sharp characterization of complexity
of learning Gaussian SIMs:

m = �d(d
k?=2); T = e�d(d

k?=2+1);

where k? is the generative exponent of �.

▶ Several conceptual gaps:

■ Why is SGD algorithm suboptimal with runtime dk? instead of dk?=2+1?

■ Why do landscape smoothing and partial trace estimators (both borrowed
from tensor PCA) achieve optimal complexity?

■ What role does the Gaussian assumption play in these results?

▶ Goal: see how our general equivariance framework which focuses on the
symmetry group clarifies these questions.
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Our framework

▶ Gaussian SIMs correspond to the orbit class

D[Od] = fDw : w � Sd�1g:

▶ Natural basis associated to Od symmetry are spherical harmonics and not
Hermite polynomials (harmonic subspaces = irreducible representations of Od.)

▶ Adopting spherical harmonic basis:

■ Clarify above questions.
■ Uncover new phenomena.
■ Extends Gaussian setting to arbitrary spherically symmetric distributions.
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1’a Learning single-index models via harmonic decomposition

[Joshi, Koubbi, M., Srebro, arXiv:2506.09887]
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Spherical Single-Index models

▶ x � � rotationally invariant

x = rz : r = kxk2 � �R ? z = x=kxk2 � �d := Unif(Sd�1):

▶ Spherical single-index models: unknown w� 2 Sd�1 and

(y;x) � Pw�;�d : x = (r; z) � � = �R 
 �d and yj(r; z) � �d(�jr; hw�;zi):

■ Link fct �d 2 P(Y � R�0 � [�1; 1])
(Y;R;Z) � �d : R � �d;R ? Z � �d;1 and Y j(R;Z) � �d(�jR;Z):

■ Gaussian SIMs: �R = �d and �d(�jr; hw�;zi) = �(�jr � hw�;zi).

▶ Given m iid data (yi; ri;zi) � P�d;w� with unknown w�, compute ŵ such that

jhŵ;w�ij � 1� ";

with proba 1� �.
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Harmonic decomposition

▶ Harmonic decomposition of L2(Sd�1) into

L2(Sd�1) =
1M
`=0

Vd;`; nd;` = dim(Vd;`) = �d(d
`);

where Vd;` denotes the space of degree-` spherical harmonics.

▶ P�d;0 distribution of (y; r) � �d;Y;R and z � �d independent.

▶ Decomposition of likelihood ratio:

dP�d;w�

dP�d;0
(y; r;z) = 1 +

1X
`=1

�d;`(y; r)Q`(hw�;zi);

�d;`(y; r) := E(Y;R;Z)��d [Q`(Z)jY = y;R = r] ;

where Q` are the orthonormal Gegenbauer polynomials (in L2([�1; 1]; �d;1))
Ez��d [Q`(he1;zi)Qk(he1;zi)] = �`=k:
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Complexity lower bounds

▶ Lower bounds (within SQ and LDP):

Sample: m ≳ inf
`�1

p
nd;`

k�d;`k2L2
; Runtime: T ≳ inf

`�1

nd;`
k�d;`k2L2

;

where nd;` = dim(Vd;`) and �d;`(y; r) = E(Y;R;Z)��d [Q`(Z)jY = y;R = r].

▶ Interpretation: consider an algorithm that only uses statistics in Vd;`:

Sample: m ≳
p
nd;`

k�d;`k2L2
; Runtime: T ≳

nd;`
k�d;`k2L2

:

For each Vd;`: matching algorithm (next slide).

Problem decouples across irreducible subspaces with optimal algo on each Vd;`.
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Matching algorithms

Sample: m ≳ inf
`�1

d`=2

k�d;`k2L2
; Runtime: T ≳ inf

`�1

d`

k�d;`k2L2
;

Subspace
Vd;`

Sample optimal Runtime optimal

Spectral algorithm

` = 1 m � d1=2

k�d;1k2L2
; T � d3=2

k�d;1k2L2

` = 2 m � d

k�d;2k2L2
; T � d2 log(d)

k�d;2k2L2
:

` � 3

Harmonic tensor unfolding

` even:

m � d`=2

k�d;`k2L2
; T � d` log(d)

k�d;`k2L2
` odd:

m � d`=2

k�d;`k2L2
; T � d`+

1
2 log(d)

k�d;`k2L2

Online SGD

m � d`�1

k�d;`k2L2
; T � d`

k�d;`k2L2
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Spectral/Online SGD algorithm

▶ ‘Spectral algorithm’: (` = 2 case) [Lu,Li,’17], [Mondelli, Montanari,’18]

ŵ = argmin
kwk2=1

wTM̂w; M̂ =
1

m

X
i2[m]

T (yi; ri)
�
d � zizT

i � Id
�
2 Rd�d

achieves

m � d

k�d;2k2L2
; T � d2

k�d;2k2L2
log(d):

▶ ‘Online SGD algorithm’ for ` � 3: online SGD on loss

min
w2Sd�1

E
�
(T (y; r)�Q`(hw;zi))2

�
achieves

m � d`�1

k�d;`k2L2
; T � d`

k�d;`k2L2
:
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Harmonic tensor unfolding

▶ Harmonic tensor: H`(z) 2 (Rd)
` defined such that

Q`(hw;zi) = hH`(z);w

`i; for all w 2 Sd�1.

Explicit formula:

H`(z) =

b`=2cX
j=0

(�1)j2`�2j `!

j!(`� 2j)!

(d=2� 1)`�j
(d� 2)`

p
nd;` � Sym(z
(`�2j) 
 I
jd ):

▶ Reproducing property:

E[Qk(hw�;zi)H`(z)] =
�k`p
nd;`

H`(w�) � w
`
� + od;k�kF (d

�1=2):

Second moment:

E
h
H`(z)
H`(z)

i
=

b`=2cX
j=0

c`;j � SymA

�
I

(`�2j)
d 
 (Id 
 Id)


j
�
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Harmonic tensor unfolding

Tensor unfolding algorithm (below the even case ` = 2p)
▶ Compute empirical tensor:

T̂ =
1

m

X
i2[m]

T (yi; ri)H`(zi) 2 (Rd)
`; E[T̂ ] = cT �w
`
� + od;k�kop(d

�1=2):

▶ Unfold the tensor [Richard, Montanari,’14]:

M̂ = Matp;p(T̂ ) 2 Rdp�dp :

and compute top eigenvector s1 2 Rdp of M̂ .

▶ ŵ top left singular vector of Mat1;p�1(s1) � w�[w

p�1
� ]T 2 Rd�dp�1

.

▶ Tensor unfolding achieves

m � d`=2

k�d;`k2L2
; T � d`

k�d;`k2L2
log(d):
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Algorithms

Sample: m ≳ inf
`�1

d`=2

k�d;`k2L2
; Runtime: T ≳ inf

`�1

d`

k�d;`k2L2
;

Subspace
Vd;`

Sample optimal Runtime optimal

Spectral algorithm

` = 1 m � d1=2

k�d;1k2L2
; T � d3=2

k�d;1k2L2

` = 2 m � d

k�d;2k2L2
; T � d2 log(d)

k�d;2k2L2
:

` � 3

Harmonic tensor unfolding

` even:

m � d`=2

k�d;`k2L2
; T � d` log(d)

k�d;`k2L2
` odd:

m � d`=2

k�d;`k2L2
; T � d`+

1
2 log(d)

k�d;`k2L2

Online SGD

m � d`�1

k�d;`k2L2
; T � d`

k�d;`k2L2
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Runtime-optimal vs sample-optimal
▶ Optimal algorithm to estimate w�: compute degree

lm;? = argmin
`�1

p
nd;`

k�d;`k2L2
; lT;? = argmin

`�1

nd;`
k�d;`k2L2

;

and use associated algorithm on Vd;lm;? or Vd;lT;? .

Competition between dim(Vd;`) and signal strength k�d;`k2L2 on that subspace.

▶ If lm;? = lT;?, then tensor algo is both sample- and runtime-optimal (nearly).

▶ In general, we can have lm;? � lT;?: we expect no algorithm can simultaneously
achieve optimal sample and runtime complexity.

6= Gaussian SIMs where both complexities are always jointly achievable.

Additional sample-runtime trade-offs when learning SIMs beyond the Gaussian
setting.

27



Example

▶ Fix k 2 N. Consider Y jR;Z � �d mixture of

Y jR;Z � �1;d(�jR;Z) w. p. 1� d�2k; Y jR;Z � �2;d(�jR;Z) w. p. d�2k:

▶ SIMs are chosen such that l?;m = 10k thanks to �d;1 and l?;T = 4k thanks to �d;2.

▶ Optimal algorithms:

■ Sample-optimal: harmonic tensor unfolding at l?;m = 10k

m � d5k; T � d10k:

■ Runtime-optimal: harmonic tensor unfolding at l?;T = 4k

m � d6k; T � d8k:
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Summary

▶ Harmonic decomposition:

L2(Sd�1) =
1M
`=0

Vd;`; nd;` = dim(Vd;`) = �d(d
`):

SIM coefficients: �d;`(y; r) = E(Y;R;Z)��d [Q`(Z)jY = y;R = r].

▶ Lower bounds decouple across these harmonic subspaces:

Sample: m ≳ inf
`�1

p
nd;`

k�d;`k2L2
; Runtime: T ≳ inf

`�1

nd;`
k�d;`k2L2

:

▶ Matching algo for each Vd;` (spectral, online SGD, harmonic tensor unfolding).

▶ Optimal algo: take algo on Vd;` with ` taken either

lm;? = argmin
`�1

p
nd;`

k�d;`k2L2
; lT;? = argmin

`�1

nd;`
k�d;`k2L2

:
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1’b Learning Gaussian Single-Index Models
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Harmonic decomposition

▶ Gaussian SIMs: r � �d and �d(�jr; hw�;zi) = �(�jrhw�;zi) with gen. exp.

k? = argmin
k�1

fk : k�kkL2 > 0 where �k = E(Y;G)��[Hek(G)jY ]g:

▶ Hermite to Gegenbauer decomposition:

Hek(r � hw�;zi) =
X
`�k

ck;`(r)Q`(hw�;zi); kck;`k2L2 � �`�k?[2]d
�(k�`)=2:

▶ Vanishing projection on lower degree harmonics: kPVd;`Hekk2L2 � d�(k�`)=2.
However, it will have important algorithmic consequences!

▶ The Gegenbauer coeffs of �d: k�d;`k2L2 � d�(k?�`+�` 6=k?[2]
)=2

m ≳ inf
`�1

p
nd;`

k�d;`k2L2
� dk?=2; T ≳ inf

`�1

nd;`
k�d;`k2L2

� dk?=2+1:

Always achieved at lm;? = lT;? = 1 if k? odd and lm;? = lT;? = 2 if k? even.
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Optimal algorithms for Gaussian SIMs

▶ Optimal algorithms on Vd;1 and Vd;2: spectral algorithm

m � dk�=2; T � dk?=2+1 log(d):

▶ For any k?: uses degree-1 or 2 spherical harmonics (depending on parity of k?).

▶ For ` = 2 (all Gaussian SIMs with even information exponent):

ŵ = argmin
w2Sd�1

wTM̂w; M̂ =
1

m

X
i2[m]

T (yi; ri)[d � zizT
i � Id]:

This is simply the algo for phase retrieval [Lu, Li,’20], [Mondelli, Montanari,’18].
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Without using the norm

▶ Consider algo that only uses directional information zi = xi=kxik2.
E.g., common practice in stats/ML of normalizing input vectors to unit norm.

▶ Indeed: kxk2 does not contain any information about w� and kxk2=
p
d! 1 a.s.

▶ However: for Gaussian SIMs with info exponent k?, the complexity becomes

m � dk?=2; T � dk? ; (optimal algo now at lm;? = lT;? = k?):

To get from �(dk?) to �(dk?=2+1) runtime, one has to exploit the norm kxk2.
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Online SGD

▶ [Ben Arous, Gheissari, Jagannath, ’21] Online SGD on population loss

min
w2Sd�1

L(w) =
1

2
E(y;x)�Pw�

h�
T (y)� �(hw;xi)

�2i
(?)

requires suboptimal m = ~�(dk?�1) and T = ~�(dk?).

▶ Dynamics stay essentially the same if x is replaced by
p
dx=kxk2: dynamics

does not exploit the norm of the Gaussian vector.

▶ From our results, estimators only using z = x=kxk2 incur T = 
(dk?).

▶ In this sense, (?) is runtime optimal among algo that only use directional info.
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Landscape smoothing
▶ [Damian, Nichani, Ge, Lee,’23] Online SGD on ‘smoothed landscape’:

min
w2Sd�1

Eu�Unif(Sd�1)E(y;x)

"�
T (y)� �

�
w + �u

kw + �uk2 � x
��2

#

achieves m = ~�(dk?=2) and runtime ~�(dk?=2+1).

▶ Frequency decomposition of the loss:

EuEy;x
�
T (y)Hek?

�
w + �u

kw + �uk2 � x
��

=
X
`�k?

m`(�) � E [T (y)ck?;`(r)Q`(hw;zi)]

■ No smoothing: m`(0) = 1, dominated by Vd;k? �! ~�(dk?) runtime.

■ Smoothing: m`(d
1
4 ) � d�

`
2 , dominated by Vd;1=Vd;2 �! ~�(d

k?
2
+1) runtime.

Smoothing reweights the landscape towards smaller frequencies (Vd;1=Vd;2).
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Partial trace estimator
▶ [Damian, Pillaud-Vivien, Lee, Bruna, ’24] compute empirical tensor

bT =
1

m

X
i2[m]

T (yi)Hek?(xi) 2 (Rd)
k? ;

and ŵ = top eigenvector of partial trace M̂ = T̂ [I

(k?=2�1)
d ] 2 Rd�d

k? even: cM =
1

m

X
i2[m]

T (yi)Pk?(kxik2)
�
xix

T
i � ckId

�
� 1

m

X
i2[m]

eT (yi; kxik2)� xix
T
i

kxik22
� Id

d

�
(spectral estimator).

Partial trace projects on optimal subspace Vd;2 (and Vd;1 for odd).

▶ Landscape smoothing and partial trace: if we normalize x, then sample
complexity becomes dk?�1 for both.
(The low frequencies Vd;1=Vd;2 are not optimal anymore.)
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Summary: Gaussian single-index model

Advantages of this “harmonic analysis” perspectives:

▶ Natural basis to study single index-models:

■ It explicitly exploits the spherical symmetry of the problem.

■ Explicitly decompose function space by delineating (r; z) and harmonic
degree. This has crucial algorithmic consequences.

■ More transparent derivation of optimal algorithms in the Gaussian setting.

▶ Recover generative exponent. Interpretation dk=2+1 vs dk runtime:
�! harmonic subspaces Vd;1; Vd;2/whether exploit the norm or not.

▶ Success of landscape smoothing/partial trace estimator:
�! effectively project on optimal Vd;1=Vd;2 subspaces.

(These algo come from tensor PCA, with similar gap d
k=2+1 vs dk .... ???)

▶ Does not use Gaussianity, only spherical invariance
�! applies to general spherically symmetric distribution �.
�! there are new phenomena beyond Gaussian setting. 37



2 Learning multi-index models

[Koubbi, Latourelle-Vigeant, M.,???’25]
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Multi-index models

▶ Label y now depends on a s-dimensional subspace W T
�x with W T

�W � = Is.

▶ Spherical multi-index models: unknown W � 2 O(d; s) and

(y;x) � PW �;�d : x = (r; z) � � = �R 
 �d and yj(r; z) � �d(�jr; hW �;zi):

▶ Lower bounds for detection (within SQ and LDP):

Sample: m ≳ inf
`�1

p
nd;`

k�d;`k2L2
; Runtime: T ≳ inf

`�1

nd;`
k�d;`k2L2

;

where �d;` := PL2(�Y;R)
Vd;`
dPW�;�d

dP0;�d
.
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An example

y = hw1;xi| {z }
2Vd;1

+ sign(hw1;xihw2;xi � � � hwk;xi)| {z }
2Vd;k

:

▶ Algos:

■ On Vd;1: m � d and T � d2 and recover w1.

■ On Vd;k: m � dk=2 and T � dk and recover [w1; : : : ;wk].

▶ Optimal detection: it is enough to consider Vd;1. But can only recover w1.

Full support recovery in one step using Vd;k.

▶ Optimal recovery algorithm: sequential adaptive learning of support

■ Step 1: on Vd;1 recover hŵ1;xi: m � d; T � d2:

■ Step 2: conditional on hŵ1;xi, on Vd�1;k�1: m � d(k�1)=2; T � dk�1:

Total complexity: m � d(k�1)=2; T � dk�1:
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Sequential learning

▶ Optimal algorithms recover the support W � sequentially:

f0g � U1 � U2 � � � � � U q�1 � U q = W � 2 O(d; s)

▶ Conditional on having recovered UTx, we can decompose (y;x) � PW �;�d :

x = UTx+ (kxk22 � kUTxk22)1=2(Id �UUT)1=2z; z � Unif(Sd�s0�1):

▶ Lower bounds for next step:

Sample: m ≳ inf
`�1

p
nd�s0;`

k�d;`;Uk2L2
; Runtime: T ≳ inf

`�1

nd�s0;`
k�d;`;Uk2L2

;

where �d;`;U := PVd�s0;`

dPW�;�d

dPU;�d

.

▶ Using optimal `: learn new directions ~U and U ! U 0 = [U ; ~U ].
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Leap complexities
▶ [Abbe, Boix-Adsera, M.,’23], [Bietti, Bruna, Pillaud-Vivien,’23], [Damian, Lee,

Bruna,’25] “complexity of the worst subspace to recover”

m ≳ Leapm(�d); T ≳ LeapT(�d);

where

sample-optimal leap: Leapm(�d) = sup
U�W �

inf
`�1

d`=2

k�d;`;Uk2L2
;

runtime-optimal leap: LeapT(�d) = sup
U�W �

inf
`�1

d`

k�d;`;Uk2L2
:

▶ Matching algorithm on each Vd0;` using harmonic tensor unfolding.
Both sample and (near-)runtime optimal on Vd0;`.

▶ Whether we are sample or compute-constrained, might choose different `.

Sample-optimal and runtime-optimal algorithms will recover the support with
different sequences f0g � U1 � � � � � U q�1 �W � and match these LBs.
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2 General Framework

[Joshi, Koubbi, M., Nati,???’25]
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Summary (I)

▶ Learning D with G-equivariant algos () Learning orbit D[G] = fDg : g 2 Gg.

▶ Lower bounds within SQ and LDP:

■ “Weak learning”: Alignment complexities

m ≳ Alignm(D;G) := inf
�̂2Ĝ0

p
n�̂

Q�̂(D;G) ;

T ≳ AlignT(D;G) := inf
�̂2Ĝ0

n�̂
M�̂(D;G) :

■ “Strong learning”: Leap complexities

m ≳ Leapm(D;G) := sup
H2S"

Alignm(D;H);

T ≳ LeapT(D;G) := sup
H2S"

AlignT(D;H):

Worst-case complexity of learning subgroup H.
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Summary (II)
▶ Optimal algorithms chosen at each step

�̂m;? := argmin
�̂2Ĥ0

p
n�̂

Q�̂(D;H)
; �̂T;? := argmin

�̂2Ĥ0

n�̂
M�̂(D;H)

:

▶ Sequential adaptive learning of the group:

■ Nested sequence of subgroups:

G =: H(0) � H(1) � H(2) � � � � � H(t+1) = feg:

■ Factorization of the group:

G = (H(0)=H(1))� (H(1)=H(2))� � � � � (H(t)=H(t+1)):

■ To learn g� = (h�1; : : : ; h
�
t ) 2 G, learn sequentially ĝ = (ĥ1; ĥ2; : : : ; ĥt).

▶ Lower bounds in terms of generic properties of the group.

Upper bounds: case by case analysis.
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Example

f�(x) = x1 + x1x2x3x4 + x1x2 � � �x7 + x1x2x3 � � �x11:

Sd
d�! Id1 �Sd�1

d3�! Id4 �Sd�4
d3�! Id7 �Sd�7

d4�! Id11 �Sd�11

[Abbe, Boix-Adsera, M.,’23]
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Open questions

▶ This framework ‘compactly’ captures a number of phenomena, but it is far from
a complete picture:

■ Systematic procedure to design optimal equivariant algorithms?

■ When do gradient-trained neural networks match these lower bounds?

■ Leap captures complexity of breaking a symmetry. How to capture other
aspects? (e.g., � that is non G-invariant).

▶ Harmonic analysis: useful tool to decompose function spaces and finding
optimal statistics of the data.

▶ Orbit classes D[G] appear in many planted models:
sparse PCA, tensor PCA, planted subgraphs, planted submatrix...

■ Many complexity gaps dk=2 vs dk between classes of algos in these models

■ For Gaussian SIMs, e.g., depends on using optimal harmonics + kxk2.
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