Fundamental limits of learning with equivariant algorithms

Theodor Misiakiewicz

Yale University

August 8th, 2025

Statistical Physics & Machine Learning: moving forward (Cargese 2025)

Joint work with Hugo Koubbi (ENS/Yale), Hugo Latourelle-Vigeant (Yale), Nirmit Joshi (TTIC), and Nati Srebro (TTIC).

Complexity of gradient-based learning

▶ Source distribution $(y, x) \sim \mathcal{D}$ over $\mathcal{Y} \times \mathcal{X}$:

Goal: fit a predictor $f: \mathcal{X} \to \mathbb{R}$ that minimizes a population loss

$$\mathcal{L}_{\mathcal{D}}(f) := \mathbb{E}_{(y,x) \sim \mathcal{D}}[\ell(y,f(x))].$$

▶ Modern approach: SGD (or variants) on parametrized model $f: \mathcal{X} \times \mathcal{W} \rightarrow \mathbb{R}$

$$\hat{f}_{NN}(\cdot;W)$$
 $W^{t+1} = W^t - \nabla_W \ell(y_t, f(x_t; W^t))$

High-dim dynamics

▶ A major theme of modern ML/statistics: computational bottlenecks

Computational-to-statistical gaps. Sample-runtime trade-offs.

2

What are the fundamental limits of learning with gradient-based algorithms?

- ▶ Goal: make some (modest) progress on this question. Ideally, the theory should:
 - explain some of the empirical phenomenology
 - describe some of the stat/computational trade-offs of gradient algo...
 - ...while capturing some fundamental hardness properties (not be too sensitive to design choices or hyperparameters).
- ▶ Here, we focus on a specific property of 'generic' gradient-type algorithms:

Equivariance with respect to a large symmetry group.

Equivariant algorithms

Source distribution $(y, x) \sim \mathcal{D}$ over $\mathcal{Y} \times \mathcal{X}$. Goal: fit a predictor $f : \mathcal{X} \to \mathbb{R}$ that minimizes a *population loss*

$$\mathcal{L}_{\mathcal{D}}(f) := \mathbb{E}_{(y,x) \sim \mathcal{D}}[\ell(y,f(x))].$$

▶ Learning algorithm A takes source D and outputs a predictor $A(D): X \to \mathbb{R}$

$$\mathcal{R}_{\mathcal{D}}(\mathcal{A}) = \mathbb{E}_{\mathcal{A}}[\mathcal{L}_{\mathcal{D}}(\mathcal{A}(\mathcal{D}))] = \mathbb{E}_{\mathcal{A}}\Big[\ \mathbb{E}_{(y,x)\sim\mathcal{D}}[\ell(y,\mathcal{A}(\mathcal{D})(x))] \ \Big].$$

▶ Group G of transformations $g: \mathcal{X} \to \mathcal{X}$

$$\mathcal{D}^g$$
 distribution of $(y,g\cdot x)$ with $(y,x)\sim \mathcal{D}$.

 $ightharpoonup \mathcal{A}$ is \mathcal{G} -equivariant if for all $g \in \mathcal{G}$

$$\mathcal{A}(\mathcal{D}^g)\circ g\stackrel{\mathrm{d}}{=} \mathcal{A}(\mathcal{D}).$$

E.g., SGD on FCNNs with Gaussian initialization: rotationally equivariant. $Adam/AdaGrad/\ell_1\text{-norm: permutation equivariant.}$

4

Orbit class of distributions

▶ If A is G-equivariant:

$$\mathcal{R}_{\mathcal{D}^g}(\mathcal{A}) = \mathbb{E}_{\mathcal{A}} igg[\mathbb{E}_{(y,x) \sim \mathcal{D}}[\ell(y,\mathcal{A}(\mathcal{D}^g)(g \cdot x))] \ igg] = \mathcal{R}_{\mathcal{D}}(\mathcal{A}), \qquad orall g \in \mathcal{G}.$$

 \triangleright A learns \mathcal{D} iff it learns the entire orbit

$$\mathcal{D}[\mathcal{G}] := \{\mathcal{D}^g : g \in \mathcal{G}\}.$$

- ▶ Learning $\mathcal{D}[\mathcal{G}] \iff$ Learning \mathcal{D} with \mathcal{G} -equivariant algos.
 - Lower bound \implies lower bound on learning \mathcal{D} with \mathcal{G} -equivariant algo.
 - Upper bound \implies algo can be randomized to make it \mathcal{G} -equivariant.

What is the complexity of learning $\mathcal{D}[\mathcal{G}]$?

 Previous works have exploited equivariance to show LBs on optimization algo [Ng, '04], [Shamir, '18], [Li, Zhang, Arora, '21], [Abbe, Boix-Adsera, '22]

5

Our work

Group-theoretic characterization of the complexity of learning $\mathcal{D}[\mathcal{G}]$.

▶ Outline:

- Most of the talk: the example of learning single-index models.
- Learning multi-index models.
- Weak learning of $\mathcal{D}[\mathcal{G}]$.
- Strong learning of $\mathcal{D}[\mathcal{G}]$.

1 Learning Single-Index Models

Gaussian Single-Index Models

 $lackbox{ Distribution } \mathcal{D} := \mathcal{D}_{oldsymbol{w}_*} ext{ indexed by } oldsymbol{w}_* \in \mathbb{S}^{d-1}$

$$(y, x) \sim \mathcal{D}: \quad x \sim \mathsf{N}(0, \mathbf{I}_d), \quad y | x \sim
ho(\cdot | \langle w_*, x
angle).$$

▶ Consider $G = O_d$ the orthogonal group in d-dimension: for $g \in O_d$,

$$(y, oldsymbol{x}) \sim \mathcal{D}^g: \qquad oldsymbol{x} \sim \mathsf{N}(0, \mathbf{I}_d), \quad y | oldsymbol{x} \sim
ho(\cdot | \langle g \cdot oldsymbol{w}_*, oldsymbol{x}
angle),$$

so that $\mathcal{D}_{\boldsymbol{w}_*}^g = \mathcal{D}_{g \cdot \boldsymbol{w}_*}$.

 $ightharpoonup \mathcal{O}_d$ -equivariant algorithms learn \mathcal{D}_{w_*} if and only if they learn

$$\mathcal{D}[\mathcal{O}_d] = \{ \mathcal{D}_{\boldsymbol{w}} : \boldsymbol{w} \in \mathbb{S}^{d-1} \}.$$

..., [Barbier, Krzakala, Macris, Miolane, Zdeborova,'19], [Mondelli, Montanari,'18], [Lu, Li,'20], [Ben Arous, Gheissari, Jagannath,'21], [Mousavi-Hossein, Park, Girotti, Mitliagkas, Erdogdu,'22], [Bietti, Bruna, Sanford, Song, '22], [Veiga, Stephan, Loureiro, Krzakala, Zdeborova,'22], [Damian, Nichani, Ge, Lee, '23], [Damian, Pillaud-Vivien, Lee, Bruna, '24], [Lee, Oko, Suzuki, Wu,'24], [Arnaboldi, Dandi, Krzakala, Loureiro, Pesce, Stephan,'24], [Chen, Wu, Lu, Yang, Wang, '24],

Learning Gaussian SIMs

Given m iid data $(y_i, x_i) \sim \mathcal{D}$:

$$(y, x) \sim \mathcal{D}: \quad x \sim \mathsf{N}(0, \mathbf{I}_d), \quad y | x \sim \rho(\cdot | \langle w_*, x \rangle),$$

for some unknown w_* , compute \hat{w} such that with probability at least $1-\delta$,

$$|\langle \boldsymbol{w}_*, \hat{\boldsymbol{w}} \rangle| \ge 1 - \varepsilon. \tag{*}$$

What are the optimal

m: sample-size and T: runtime

to solve (*)?

■ Information theoretically $m = \Theta(d/\varepsilon)$ is always optimal. In this talk: $sample\text{-}optimal = optimal sample\text{-}size to solve (*) in polynomial time.}$

Sharp characterization

▶ [Barbier et al., '17], [Lu, Li, '17], [Mondelli, Montanari, '18] $(k_* = 1, 2)$ [Damian, Pillaud-Vivien, Lee, Bruna, '24] $(k_* \ge 3)$

$$\mathsf{m} = \Theta_d(d^{\max(\mathsf{k}_\star/2,1)}), \qquad \mathsf{T} = \widetilde{\Theta}_d(d^{\max(\mathsf{k}_\star/2,1)+1}).$$

where k_{\star} = "generative exponent" of ρ .

(SQ and LDP lower bounds.)

- \blacktriangleright Several works have progressively close the gap to these optimal rates $(k_\star \geq 2)$:
 - Online SGD [Ben Arous, Gheissari, Jagannath, '21]:

$$\mathsf{m} = \widetilde{\Theta}_d(d^{\mathsf{k}_{\star}-1}), \qquad \mathsf{T} = \widetilde{\Theta}_d(d^{\mathsf{k}_{\star}}).$$

Landscape smoothing [Damian, Nichani, Ge, Lee, '23]:

$$\mathsf{m} = \widetilde{\Theta}_d(d^{\mathsf{k}_\star/2}), \qquad \mathsf{T} = \widetilde{\Theta}_d(d^{\mathsf{k}_\star/2+1}).$$

■ Partial trace estimator [Damian, Pillaud-Vivien, Lee, Bruna,'24]:

$$\mathsf{m} = \Theta_d(d^{\mathsf{k}_{\star}/2}), \qquad \mathsf{T} = \widetilde{\Theta}_d(d^{\mathsf{k}_{\star}/2+1}).$$

Online SGD algorithm

▶ [Ben Arous, Gheissari, Jagannath, '21] Online SGD on population loss

$$\mathcal{L}(oldsymbol{w}) = rac{1}{2} \mathbb{E}_{(y,oldsymbol{x}) \sim \mathbb{P}_{oldsymbol{w}_*}} \left[\left(y - \sigma(\langle oldsymbol{w}, oldsymbol{x}
angle)
ight)^2
ight]$$

► Information exponent:

$$\mathsf{k_l} := rg \min\{k \geq 1 \ : \ \mu_k(y) = \mathbb{E}_
ho[Y \mathrm{He}_k(G)]
eq 0\}.$$
 So that $\mathcal{L}(m{w}) = \mathcal{L}_* - \Theta(\langle m{w}, m{w}_*
angle^{\mathsf{k_l}}).$

- ▶ Initialization $w_0 \sim \text{Unif}(\mathbb{S}^{d-1})$, we have $\langle w_*, \nabla \mathcal{L}(w_0) \rangle = \Theta_{d,\mathbb{P}}(d^{-(\mathsf{k}_l-1)/2})$.
- ▶ [Ben Arous, Gheissari, Jagannath, '21] # of SGD iterations (= # of samples)

$$\mathsf{m} = egin{cases} \Theta(d) & ext{if } \mathsf{k_l} = 1, \ \widetilde{\Theta}(d^{\mathsf{k_l}-1}) & ext{if } \mathsf{k_l} > 1. \end{cases}$$

Total runtime: $T = \Theta_d(md) = \widetilde{\Theta}_d(d^{\max(k_l,2)})$.

Generative exponent

- Are $m = \widetilde{\Theta}_d(d^{\max(k_l-1,1)})$ and $T = \widetilde{\Theta}_d(d^{\max(k_l,2)})$ optimal to learn SIM?
- ▶ We can do much better if we:
 - Reuse samples [Dandi, Troiani, Arnaboldi, Pesce, Zdeborová, Krzakala,'24], [Lee, Oko, Suzuki, Wu,'24], [Arnaboldi, Dandi, Krzakala, Loureiro, Pesce, Stephan,'24]
 - Change loss function [Joshi, M., Srebro, '24]
 - lacksquare Apply a transformation $\mathcal{T}(y)$ to the label [Damian, Pillaud-V, Lee, Bruna,'24]
- ▶ [Damian, Pillaud-Vivien, Lee, Bruna, '24] Generative exponent of ρ:

$$\mathsf{k}_{\star} := \arg\min\{k \geq 1: \exists \mathcal{T}: \mathcal{Y} \rightarrow \mathbb{R}, \ \mu_k(\mathcal{T}(y)) = \mathbb{E}_{\rho}[\mathcal{T}(Y)\mathsf{He}_k(G)] \neq 0\},$$

and showed that (optimal within SQ and LDP):

$$\mathsf{m} = \Theta_d(d^{\max(\mathsf{k}_\star/2,1)}), \qquad \mathsf{T} = \widetilde{\Theta}_d(d^{\max(\mathsf{k}_\star/2,1)+1}).$$

Online SGD algorithm suboptimal

• Online SGD on $\mathcal{L}(w) = \frac{1}{2}\mathbb{E}[(\mathcal{T}(y) - \sigma(\langle w, x \rangle))^2]$:

$$\mathsf{m} = \widetilde{\Theta}_{d}(d^{\max(\mathsf{k}_{\star}-1,1)}), \qquad \mathsf{T} = \widetilde{\Theta}_{d}(d^{\max(\mathsf{k}_{\star},2)}).$$

- Suboptimal compared to $\mathsf{m} = \Theta_d(d^{\max(\mathsf{k}_\star/2,1)})$ or $\mathsf{T} = \widetilde{\Theta}_d(d^{\max(\mathsf{k}_\star/2,1)+1})$.
 - Changing loss will not help.
 - Reusing samples unlikely to help (bad local minima [M., Saeed, Zhu,'25]).

Why is SGD suboptimal here?

Landscape smoothing

- [Damian, Nichani, Ge, Lee, '23] modified this algo using landscape smoothing, from tensor PCA [Biroli, Cammarota, Ricci-Tersenghi, '20]
- ▶ Online SGD on population loss

$$\mathcal{L}_{\lambda}(oldsymbol{w}) := \ \mathbb{E}_{oldsymbol{u} \sim \mathrm{Unif}(\mathbb{S}^{d-1})} \left[\mathcal{L}\Big(rac{oldsymbol{w} + \lambda oldsymbol{u}}{\|oldsymbol{w} + \lambda oldsymbol{u}\|_2} \Big)
ight]$$

where
$$\lambda = d^{1/4}$$
 and $\mathcal{L}(\boldsymbol{w}) = \frac{1}{2}\mathbb{E}[(\mathcal{T}(y) - \sigma(\langle \boldsymbol{w}, \boldsymbol{x} \rangle))^2].$

▶ This modification achieves (near-)optimal complexity:

$$\mathsf{m} = \widetilde{\Theta}_{\mathit{d}}(\mathit{d}^{\mathsf{k}_{\star}/2}), \qquad \mathsf{T} = \widetilde{\Theta}_{\mathit{d}}(\mathit{d}^{\mathsf{k}_{\star}/2+1}).$$

Why does this modification achieve optimal complexity*?

Why $d^{k_{\star}/2+1}$ versus $d^{k_{\star}}$ runtime complexity?

(*Note that this algo fails on a slightly modified SIM)

Partial trace of Hermite tensor

- ▶ [Damian, Pillaud-Vivien, Lee, Bruna,'24] achieved $m = \Theta(d^{k_{\star}/2})$ using partial trace of an Hermite tensor (again from tensor PCA [Hopkins et al.,'16]).
- Construct an empirical tensor

$$\hat{m{T}} := rac{1}{\mathsf{m}} \sum_{i \in [\mathsf{m}]} \mathcal{T}(y_i) \mathbf{He}_{\mathsf{k}_\star}(m{x}_i) \in (\mathbb{R}^d)^{\otimes \mathsf{k}_\star} \qquad (ext{s.t., } \mathbb{E}[\hat{m{T}}] = c_{\mathcal{T},\mathsf{k}_\star} \cdot m{w}_*^{\otimes \mathsf{k}_\star})$$

and take partial trace (here for k* even):

$$\hat{oldsymbol{w}} = rg \min_{\|oldsymbol{u}\|_2 = 1} oldsymbol{u}^{ op} \hat{oldsymbol{M}} oldsymbol{u}, \quad \hat{oldsymbol{M}} = \hat{oldsymbol{T}} [\mathbf{I}_d^{\otimes (\mathsf{k}_{\star}/2 - 1)}] \in \mathbb{R}^{d imes d}.$$

Achieves

$$\mathsf{m} = \Theta_d(d^{\mathsf{k}_\star/2}), \qquad \mathsf{T} = \widetilde{\Theta}_d(d^{\mathsf{k}_\star/2+1}).$$

Why does partial trace achieve optimal complexity*?

Why
$$d^{k_{\star}/2}$$
 sample complexity?

(*Note that this algo fails on a slightly modified SIM)

Summary

[Damian, Pillaud-Vivien, Lee, Bruna,'24] sharp characterization of complexity of learning Gaussian SIMs:

$$\mathsf{m} = \Theta_d(d^{\mathsf{k}_{\star}/2}), \qquad \mathsf{T} = \widetilde{\Theta}_d(d^{\mathsf{k}_{\star}/2+1}),$$

where k_{\star} is the generative exponent of ρ .

- Several conceptual gaps:
 - Why is SGD algorithm suboptimal with runtime $d^{k_{\star}}$ instead of $d^{k_{\star}/2+1}$?
 - Why do landscape smoothing and partial trace estimators (both borrowed from tensor PCA) achieve optimal complexity?
 - What role does the Gaussian assumption play in these results?
- ▶ Goal: see how our general equivariance framework which focuses on the symmetry group clarifies these questions.

Our framework

Gaussian SIMs correspond to the orbit class

$$\mathcal{D}[\mathcal{O}_d] = \{\mathcal{D}_{\boldsymbol{w}} : \boldsymbol{w} \sim \mathbb{S}^{d-1}\}.$$

- Natural basis associated to \mathcal{O}_d symmetry are spherical harmonics and not Hermite polynomials (harmonic subspaces = irreducible representations of \mathcal{O}_d .)
- Adopting spherical harmonic basis:
 - Clarify above questions.
 - Uncover new phenomena.
 - Extends Gaussian setting to arbitrary spherically symmetric distributions.

Learning single-index models via harmonic decomposition

[Joshi, Koubbi, M., Srebro, arXiv:2506.09887]

Spherical Single-Index models

• $x \sim \mu$ rotationally invariant

$$oldsymbol{x} = roldsymbol{z}: \qquad r = \|oldsymbol{x}\|_2 \sim \mu_R \quad \perp \quad oldsymbol{z} = oldsymbol{x}/\|oldsymbol{x}\|_2 \sim au_d := \mathrm{Unif}(\mathbb{S}^{d-1}).$$

lacktriangle Spherical single-index models: unknown $oldsymbol{w}_* \in \mathbb{S}^{d-1}$ and

$$(y,x) \sim \mathbb{P}_{oldsymbol{w}_*,
u_d}: \quad oldsymbol{x} = (r,oldsymbol{z}) \sim \mu = \mu_R \otimes au_d \quad ext{and} \quad oldsymbol{y} | (r,oldsymbol{z}) \sim
u_d(\cdot | r, \langle oldsymbol{w}_*, oldsymbol{z}
angle).$$

- $\begin{array}{c} \blacksquare \ \, \text{Link fct} \,\, \nu_d \in \mathcal{P}(\mathcal{Y} \times \mathbb{R}_{\geq 0} \times [-1,1]) \\ \\ (Y,R,Z) \sim \nu_d : \quad R \sim \nu_{d,R} \,\, \perp \,\, Z \sim \tau_{d,1} \quad \text{and} \quad Y | (R,Z) \sim \nu_d(\cdot |R,Z). \end{array}$
- lacksquare Gaussian SIMs: $\mu_R = \chi_d$ and $\nu_d(\cdot|r,\langle m{w}_*,m{z}\rangle) =
 ho(\cdot|r\cdot\langle m{w}_*,m{z}\rangle).$
- ▶ Given m iid data $(y_i, r_i, z_i) \sim \mathbb{P}_{\nu_d, w_*}$ with unknown w_* , compute \hat{w} such that $|\langle \hat{w}, w_* \rangle| \geq 1 \varepsilon,$

with proba $1 - \delta$.

Harmonic decomposition

▶ Harmonic decomposition of $L^2(\mathbb{S}^{d-1})$ into

$$L^2(\mathbb{S}^{d-1}) = igoplus_{\ell=0}^\infty V_{d,\ell}, \qquad n_{d,\ell} = \dim(V_{d,\ell}) = \Theta_d(d^\ell),$$

where $V_{d,\ell}$ denotes the space of degree- ℓ spherical harmonics.

- ▶ $\mathbb{P}_{\nu_d,0}$ distribution of $(y,r) \sim \nu_{d,Y,R}$ and $z \sim \tau_d$ independent.
- Decomposition of likelihood ratio:

$$egin{aligned} rac{\mathrm{d}\mathbb{P}_{
u_d,oldsymbol{w}_*}}{\mathrm{d}\mathbb{P}_{
u_d,0}}(y,r,oldsymbol{z}) &= 1 + \sum_{\ell=1}^\infty \xi_{d,\ell}(y,r) Q_\ell(\langle oldsymbol{w}_*,oldsymbol{z}
angle), \ \xi_{d,\ell}(y,r) &:= \mathbb{E}_{(Y,R,Z)\sim
u_d}\left[Q_\ell(Z)|Y=y,R=r
ight], \end{aligned}$$

where Q_ℓ are the orthonormal Gegenbauer polynomials (in $L^2([-1,1], au_{d,1}))$

$$\mathbb{E}_{z \sim \tau_d}[Q_\ell(\langle e_1, z \rangle)Q_k(\langle e_1, z \rangle)] = \delta_{\ell=k}.$$

Complexity lower bounds

▶ Lower bounds (within SQ and LDP):

$$\text{Sample:} \quad \mathsf{m} \ \gtrsim \ \inf_{\ell \geq 1} \ \frac{\sqrt{n_{d,\ell}}}{\|\xi_{d,\ell}\|_{L^2}^2}, \qquad \quad \text{Runtime:} \quad \mathsf{T} \ \gtrsim \ \inf_{\ell \geq 1} \ \frac{n_{d,\ell}}{\|\xi_{d,\ell}\|_{L^2}^2},$$

where
$$n_{d,\ell} = \dim(V_{d,\ell})$$
 and $\xi_{d,\ell}(y,r) = \mathbb{E}_{(Y,R,Z) \sim \nu_d} [Q_\ell(Z)|Y=y,R=r]$.

▶ Interpretation: consider an algorithm that only uses statistics in $V_{d,\ell}$:

$$\text{Sample:} \quad \mathsf{m} \ \gtrsim \ \frac{\sqrt{n_{d,\ell}}}{\|\xi_{d,\ell}\|_{L^2}^2}, \qquad \quad \text{Runtime:} \quad \mathsf{T} \ \gtrsim \ \frac{n_{d,\ell}}{\|\xi_{d,\ell}\|_{L^2}^2}.$$

For each $V_{d,\ell}$: matching algorithm (next slide).

Problem decouples across irreducible subspaces with optimal algo on each $V_{d,\ell}.$

Matching algorithms

$$\text{Sample:} \quad \mathsf{m} \ \gtrsim \ \inf_{\ell \geq 1} \ \frac{d^{\ell/2}}{\|\xi_{d,\ell}\|_{L^2}^2}, \qquad \quad \text{Runtime:} \quad \mathsf{T} \ \gtrsim \ \inf_{\ell \geq 1} \ \frac{d^\ell}{\|\xi_{d,\ell}\|_{L^2}^2},$$

Subspace	Sample optimal	Runtime optimal
$V_{d,\ell}$		
	Spectral algorithm	
	$d^{1/2}$	$ d^{3/2}$
$\ell=1$	$m symp rac{d^{1/2}}{\ \xi_{d,1}\ _{L^2}^2},$	$\Gammasymp rac{}{\leftert \leftert \leftert \leftert _{d,1} ightert ightert _{L^{2}}^{2}}$
$\ell=2$	$m \asymp \frac{d}{\ \xi_{d,2}\ _{L^2}^2},$	$Tsymp rac{d^2\log(d)}{ \xi_{d,2} ^2_{L^2}}.$
	Harmonic tensor unfolding	
	ℓ even:	
$\ell \geq 3$	$m symp rac{d^{\ell/2}}{\ oldsymbol{\xi}_{d,\ell}\ _{L^2}^2}, T symp rac{d^{\ell} \log(d)}{\ oldsymbol{\xi}_{d,\ell}\ _{L^2}^2}$	$Online \ SGD \ m symp rac{d^{\ell-1}}{\ \xi_{d,\ell}\ _{r,2}^2}, T symp rac{d^{\ell}}{\ \xi_{d,\ell}\ _{r,2}^2}$
	ℓ odd:	$\Pi \stackrel{\sim}{=} { \xi_{d,\ell} ^2_{L^2}}, \Gamma \stackrel{\sim}{=} { \xi_{d,\ell} ^2_{L^2}}$
	$oxed{m} symp rac{d^{\ell/2}}{\ \xi_{d,\ell}\ _{L^2}^2}, T symp rac{d^{\ell+rac{1}{2}}\log(d)}{\ \xi_{d,\ell}\ _{L^2}^2}$	

Spectral/Online SGD algorithm

• 'Spectral algorithm': ($\ell = 2$ case) [Lu,Li,'17], [Mondelli, Montanari,'18]

$$\hat{oldsymbol{w}} = \mathop{rg\min}_{\|oldsymbol{w}\|_2 = 1} oldsymbol{w}^{\mathsf{T}} \hat{oldsymbol{M}} oldsymbol{w}, \qquad \hat{oldsymbol{M}} = rac{1}{\mathsf{m}} \sum_{i \in [\mathsf{m}]} \mathcal{T}(y_i, r_i) \left[d \cdot oldsymbol{z}_i oldsymbol{z}_i^{\mathsf{T}} - \mathbf{I}_d
ight] \in \mathbb{R}^{d imes d}$$

achieves

$$\mathsf{m} symp rac{d}{\|\xi_{d,2}\|_{L^2}^2}, \qquad \mathsf{T} symp rac{d^2}{\|\xi_{d,2}\|_{L^2}^2} \log(d).$$

▶ 'Online SGD algorithm' for $\ell \geq 3$: online SGD on loss

$$\min_{oldsymbol{w} \in \mathbb{S}^{d-1}} \mathbb{E}\left[\left(\mathcal{T}(y,r) - Q_{\ell}(\langle oldsymbol{w}, oldsymbol{z}
angle)
ight)^2
ight]$$

achieves

$$\mathsf{m} \asymp \frac{d^{\ell-1}}{\|\xi_{d,\ell}\|_{L^2}^2}, \qquad \mathsf{T} \asymp \frac{d^\ell}{\|\xi_{d,\ell}\|_{L^2}^2}.$$

Harmonic tensor unfolding

▶ Harmonic tensor: $\mathcal{H}_{\ell}(z) \in (\mathbb{R}^d)^{\otimes \ell}$ defined such that

$$Q_{\ell}(\langle \boldsymbol{w}, \boldsymbol{z} \rangle) = \langle \mathcal{H}_{\ell}(\boldsymbol{z}), \boldsymbol{w}^{\otimes \ell} \rangle, \qquad \text{for all } \boldsymbol{w} \in \mathbb{S}^{d-1}.$$

Explicit formula:

$$\mathcal{H}_{\ell}(\boldsymbol{z}) = \sum_{j=0}^{\lfloor \ell/2 \rfloor} (-1)^{j} 2^{\ell-2j} \frac{\ell!}{j!(\ell-2j)!} \frac{(d/2-1)_{\ell-j}}{(d-2)_{\ell}} \sqrt{n_{d,\ell}} \cdot \operatorname{Sym}(\boldsymbol{z}^{\otimes (\ell-2j)} \otimes \mathbf{I}_{d}^{\otimes j}).$$

Reproducing property:

$$\mathbb{E}[Q_k(\langle w_*,z
angle)\mathcal{H}_\ell(z)] = rac{\delta_{k\ell}}{\sqrt{n_{d,\ell}}}\mathcal{H}_\ell(w_*)pprox w_*^{\otimes \ell} + o_{d,\|\cdot\|_F}(d^{-1/2}).$$

Second moment:

$$\mathbb{E}\Big[\mathcal{H}_{\ell}(\boldsymbol{z}) \otimes \mathcal{H}_{\ell}(\boldsymbol{z})\Big] = \sum_{j=0}^{\lfloor \ell/2 \rfloor} c_{\ell,j} \cdot \operatorname{Sym}_{A} \left(\mathbf{I}_{d}^{\otimes (\ell-2j)} \otimes (\mathbf{I}_{d} \otimes \mathbf{I}_{d})^{\otimes j}\right)$$

Harmonic tensor unfolding

Tensor unfolding algorithm (below the even case $\ell=2p$)

► Compute empirical tensor:

$$\hat{m{T}} = rac{1}{\mathsf{m}} \sum_{i \in [\mathsf{m}]} \mathcal{T}(y_i, r_i) \mathcal{H}_{\ell}(m{z}_i) \in (\mathbb{R}^d)^{\otimes \ell}, \qquad \mathbb{E}[\hat{m{T}}] = c_{\mathcal{T}} \cdot m{w}_*^{\otimes \ell} + o_{d, \|\cdot\|_{\mathrm{op}}}(d^{-1/2}).$$

▶ Unfold the tensor [Richard, Montanari,'14]:

$$\hat{m{M}} = \mathbf{Mat}_{p,p}(\hat{m{T}}) \in \mathbb{R}^{d^p imes d^p}.$$

and compute top eigenvector $s_1 \in \mathbb{R}^{d^p}$ of \hat{M} .

- $\qquad \hat{\boldsymbol{w}} \text{ top left singular vector of } \mathbf{Mat}_{1,p-1}(\boldsymbol{s}_1) \approx \boldsymbol{w}_*[\boldsymbol{w}_*^{\otimes p-1}]^\mathsf{T} \in \mathbb{R}^{d \times d^{p-1}}.$
- Tensor unfolding achieves

$$\mathsf{m} symp rac{d^{\ell/2}}{\|\xi_{d,\ell}\|_{L^2}^2}, \qquad \mathsf{T} symp rac{d^\ell}{\|\xi_{d,\ell}\|_{L^2}^2}\log(d).$$

Algorithms

$$\text{Sample:} \quad \mathsf{m} \ \gtrsim \ \inf_{\ell \geq 1} \ \frac{d^{\ell/2}}{||\xi_{d,\ell}||_{L^2}^2}, \qquad \quad \mathsf{Runtime:} \quad \mathsf{T} \ \gtrsim \ \inf_{\ell \geq 1} \ \frac{d^\ell}{||\xi_{d,\ell}||_{L^2}^2},$$

Subspace	Sample optimal	Runtime optimal
$V_{d,\ell}$		
	Spectral algorithm	
	$d^{1/2}$	$ d^{3/2}$
$\ell=1$	$m symp rac{d^{1/2}}{\ \xi_{d,1}\ _{L^2}^2},$	$\Gammasymp rac{}{\leftert \leftert \leftert \leftert _{d,1} ightert ightert _{L^{2}}^{2}}$
$\ell=2$	$m \asymp \frac{d}{\ \xi_{d,2}\ _{L^2}^2},$	$Tsymp rac{d^2\log(d)}{ \xi_{d,2} ^2_{L^2}}.$
	Harmonic tensor unfolding	
	ℓ even:	
$\ell \geq 3$	$m symp rac{d^{\ell/2}}{\ oldsymbol{\xi}_{d,\ell}\ _{L^2}^2}, T symp rac{d^{\ell} \log(d)}{\ oldsymbol{\xi}_{d,\ell}\ _{L^2}^2}$	$Online \ SGD \ m symp rac{d^{\ell-1}}{\ \xi_{d,\ell}\ _{r,2}^2}, T symp rac{d^{\ell}}{\ \xi_{d,\ell}\ _{r,2}^2}$
	ℓ odd:	$\Pi \stackrel{\sim}{=} { \xi_{d,\ell} ^2_{L^2}}, \Gamma \stackrel{\sim}{=} { \xi_{d,\ell} ^2_{L^2}}$
	$oxed{m} symp rac{d^{\ell/2}}{\ \xi_{d,\ell}\ _{L^2}^2}, T symp rac{d^{\ell+rac{1}{2}}\log(d)}{\ \xi_{d,\ell}\ _{L^2}^2}$	

Runtime-optimal vs sample-optimal

ightharpoonup Optimal algorithm to estimate w_* : compute degree

$$\mathsf{I}_{\mathsf{m},\star} = \operatorname*{arg\,min}_{\ell \geq 1} \frac{\sqrt{n_{d,\ell}}}{\|\xi_{d,\ell}\|_{L^2}^2}, \qquad \mathsf{I}_{\mathsf{T},\star} = \operatorname*{arg\,min}_{\ell \geq 1} \frac{n_{d,\ell}}{\|\xi_{d,\ell}\|_{L^2}^2},$$

and use associated algorithm on $V_{d,l_{m,\star}}$ or $V_{d,l_{T,\star}}$.

Competition between $\dim(V_{d,\ell})$ and signal strength $\|\xi_{d,\ell}\|_{L^2}^2$ on that subspace.

- ▶ If $I_{m,\star} = I_{T,\star}$, then tensor algo is both sample- and runtime-optimal (nearly).
- In general, we can have $I_{m,\star}\gg I_{T,\star}$: we expect no algorithm can simultaneously achieve optimal sample and runtime complexity.

≠ Gaussian SIMs where both complexities are always jointly achievable.

Additional sample-runtime trade-offs when learning SIMs beyond the Gaussian setting.

Example

Fix $k \in \mathbb{N}$. Consider $Y|R, Z \sim \nu_d$ mixture of

$$Y|R,Z \sim \nu_{1,d}(\cdot|R,Z) \quad \text{w. p. } 1 - d^{-2k}, \qquad Y|R,Z \sim \nu_{2,d}(\cdot|R,Z) \quad \text{w. p. } d^{-2k}.$$

- ▶ SIMs are chosen such that $I_{\star,m} = 10k$ thanks to $\nu_{d,1}$ and $I_{\star,T} = 4k$ thanks to $\nu_{d,2}$.
- ▶ Optimal algorithms:
 - Sample-optimal: harmonic tensor unfolding at $l_{\star,m} = 10k$

$$\mathsf{m} \asymp d^{5k}, \qquad \mathsf{T} \asymp d^{10k}.$$

■ Runtime-optimal: harmonic tensor unfolding at $I_{\star,T} = 4k$

$$\mathsf{m} \asymp d^{6k}, \qquad \mathsf{T} \asymp d^{8k}.$$

Summary

► Harmonic decomposition:

$$L^2(\mathbb{S}^{d-1}) = igoplus_{\ell=0}^\infty V_{d,\ell}, \qquad n_{d,\ell} = \dim(V_{d,\ell}) = \Theta_d(d^\ell).$$

SIM coefficients: $\xi_{d,\ell}(y,r) = \mathbb{E}_{(Y,R,Z) \sim \nu_d} [Q_\ell(Z)|Y=y,R=r].$

▶ Lower bounds decouple across these harmonic subspaces:

Sample:
$$\mathsf{m} \gtrsim \inf_{\ell \geq 1} \frac{\sqrt{n_{d,\ell}}}{\|\xi_{d,\ell}\|_{L^2}^2}$$
, Runtime: $\mathsf{T} \gtrsim \inf_{\ell \geq 1} \frac{n_{d,\ell}}{\|\xi_{d,\ell}\|_{L^2}^2}$.

- ▶ Matching algo for each $V_{d,\ell}$ (spectral, online SGD, harmonic tensor unfolding).
- ▶ Optimal algo: take algo on $V_{d,\ell}$ with ℓ taken either

$$I_{\mathsf{m},\star} = rg \min_{\ell \geq 1} rac{\sqrt{n_{d,\ell}}}{\|\xi_{d,\ell}\|_{L^2}^2}, \qquad I_{\mathsf{T},\star} = rg \min_{\ell \geq 1} rac{n_{d,\ell}}{\|\xi_{d,\ell}\|_{L^2}^2}.$$

Learning Gaussian Single-Index Models

Harmonic decomposition

▶ Gaussian SIMs: $r \sim \chi_d$ and $\nu_d(\cdot|r,\langle w_*,z\rangle) = \rho(\cdot|r\langle w_*,z\rangle)$ with gen. exp.

$$\mathsf{k}_{\star} = \mathop{\arg\min}_{k \geq 1} \{k: ||\zeta_k||_{L^2} > 0 \text{ where } \zeta_k = \mathbb{E}_{(Y,G) \sim \rho}[\mathsf{He}_k(G)|Y]\}.$$

▶ Hermite to Gegenbauer decomposition:

$$\operatorname{He}_k(r \cdot \langle oldsymbol{w}_*, oldsymbol{z}
angle) = \sum_{\ell \leq k} c_{k,\ell}(r) Q_\ell(\langle oldsymbol{w}_*, oldsymbol{z}
angle), \qquad \|c_{k,\ell}\|_{L^2}^2 symp \delta_{\ell \equiv \mathsf{k}_\star[2]} d^{-(k-\ell)/2}.$$

- ▶ Vanishing projection on lower degree harmonics: $\|P_{V_{d,\ell}} He_k\|_{L^2}^2 \approx d^{-(k-\ell)/2}$. However, it will have important algorithmic consequences!
- ▶ The Gegenbauer coeffs of ν_d : $\|\xi_{d,\ell}\|_{L^2}^2 \asymp d^{-(\mathsf{k}_{\star}-\ell+\delta_{\ell \neq \mathsf{k}_{\star}[2]})/2}$

$$\mathsf{m} \, \gtrsim \, \inf_{\ell \geq 1} \, rac{\sqrt{n_{d,\ell}}}{\|\xi_{d,\ell}\|_{L^2}^2} \, egin{array}{c} d^{\mathsf{k}_{\star}/2}, & \mathsf{T} \, \gtrsim \, \inf_{\ell \geq 1} \, rac{n_{d,\ell}}{\|\xi_{d,\ell}\|_{L^2}^2} \, egin{array}{c} d^{\mathsf{k}_{\star}/2+1}. \end{array}$$

Always achieved at $I_{m,\star}=I_{T,\star}=1$ if k_{\star} odd and $I_{m,\star}=I_{T,\star}=2$ if k_{\star} even.

Optimal algorithms for Gaussian SIMs

▶ Optimal algorithms on $V_{d,1}$ and $V_{d,2}$: spectral algorithm

$$\mathsf{m} \asymp d^{\mathsf{k}_*/2}, \qquad \mathsf{T} \asymp d^{\mathsf{k}_\star/2+1}\log(d).$$

- For any k_{\star} : uses degree-1 or 2 spherical harmonics (depending on parity of k_{\star}).
- ▶ For $\ell = 2$ (all Gaussian SIMs with even information exponent):

$$\hat{m{w}} = rg\min_{m{w} \in \mathbb{S}^{d-1}} m{w}^{\mathsf{T}} \hat{m{M}} m{w}, \qquad \hat{m{M}} = rac{1}{m} \sum_{i \in [m]} \mathcal{T}(y_i, r_i) [d \cdot m{z}_i m{z}_i^{\mathsf{T}} - \mathbf{I}_d].$$

This is simply the algo for phase retrieval [Lu, Li,'20], [Mondelli, Montanari,'18].

Without using the norm

- Consider algo that only uses directional information $z_i = x_i/||x_i||_2$. E.g., common practice in stats/ML of normalizing input vectors to unit norm.
- ▶ Indeed: $||x||_2$ does not contain any information about w_* and $||x||_2/\sqrt{d} \to 1$ a.s.

► However: for Gaussian SIMs with info exponent k_{*}, the complexity becomes

$$m \asymp d^{k_\star/2}, \qquad T \asymp d^{k_\star}, \qquad \text{(optimal algo now at } I_{m,\star} = I_{T,\star} = k_\star).$$

To get from $\Theta(d^{k_{\star}})$ to $\Theta(d^{k_{\star}/2+1})$ runtime, one has to exploit the norm $||x||_2$.

Online SGD

▶ [Ben Arous, Gheissari, Jagannath, '21] Online SGD on population loss

$$\min_{\boldsymbol{w} \in \mathbb{S}^{d-1}} \mathcal{L}(\boldsymbol{w}) = \frac{1}{2} \mathbb{E}_{(\boldsymbol{y}, \boldsymbol{x}) \sim \mathbb{P}_{\boldsymbol{w}_*}} \left[\left(\mathcal{T}(\boldsymbol{y}) - \sigma(\langle \boldsymbol{w}, \boldsymbol{x} \rangle) \right)^2 \right] \tag{\star}$$

requires suboptimal $m = \tilde{\Theta}(d^{k_{\star}-1})$ and $T = \tilde{\Theta}(d^{k_{\star}})$.

- Dynamics stay essentially the same if x is replaced by $\sqrt{dx}/||x||_2$: dynamics does not exploit the norm of the Gaussian vector.
- From our results, estimators only using $z=x/||x||_2$ incur $\mathsf{T}=\Omega(d^{\mathsf{k}_{\star}})$.
- In this sense, (\star) is runtime optimal among algo that only use directional info.

Landscape smoothing

▶ [Damian, Nichani, Ge, Lee, '23] Online SGD on 'smoothed landscape':

$$\min_{\boldsymbol{w} \in \mathbb{S}^{d-1}} \mathbb{E}_{\boldsymbol{u} \sim \operatorname{Unif}(\mathbb{S}^{d-1})} \mathbb{E}_{(\boldsymbol{y}, \boldsymbol{x})} \left[\left(\mathcal{T}(\boldsymbol{y}) - \sigma \left(\frac{\boldsymbol{w} + \lambda \boldsymbol{u}}{\|\boldsymbol{w} + \lambda \boldsymbol{u}\|_2} \cdot \boldsymbol{x} \right) \right)^2 \right]$$

achieves $m = \tilde{\Theta}(d^{k_{\star}/2})$ and runtime $\tilde{\Theta}(d^{k_{\star}/2+1}).$

Frequency decomposition of the loss:

$$\mathbb{E}_{\boldsymbol{u}} \mathbb{E}_{\boldsymbol{y}, \boldsymbol{x}} \left[\mathcal{T}(\boldsymbol{y}) \mathsf{He}_{\mathsf{k}_{\star}} \left(\frac{\boldsymbol{w} + \lambda \boldsymbol{u}}{\|\boldsymbol{w} + \lambda \boldsymbol{u}\|_{2}} \cdot \boldsymbol{x} \right) \right] = \sum_{\boldsymbol{\ell} \leq \mathsf{k}_{\star}} \boldsymbol{m}_{\boldsymbol{\ell}}(\boldsymbol{\lambda}) \cdot \mathbb{E} \left[\mathcal{T}(\boldsymbol{y}) c_{\mathsf{k}_{\star}, \boldsymbol{\ell}}(\boldsymbol{r}) Q_{\boldsymbol{\ell}}(\langle \boldsymbol{w}, \boldsymbol{z} \rangle) \right]$$

- No smoothing: $m_{\ell}(0) = 1$, dominated by $V_{d,k_{\star}} \longrightarrow \tilde{\Theta}(d^{k_{\star}})$ runtime.
- lacksquare Smoothing: $m_\ell(d^{rac{1}{4}})symp d^{-rac{\ell}{2}}$, dominated by $V_{d,1}/V_{d,2}\longrightarrow ilde{\Theta}(d^{rac{k_*}{2}+1})$ runtime.

Smoothing reweights the landscape towards smaller frequencies $(V_{d,1}/V_{d,2})$.

Partial trace estimator

▶ [Damian, Pillaud-Vivien, Lee, Bruna, '24] compute empirical tensor

$$\widehat{oldsymbol{T}} = rac{1}{m} \sum_{i \in [m]} \mathcal{T}(y_i) \mathbf{He}_{\mathsf{k}_{\star}}(oldsymbol{x}_i) \in (\mathbb{R}^d)^{\otimes \mathsf{k}_{\star}},$$

and $\hat{w}=$ top eigenvector of partial trace $\hat{M}=\hat{T}[\mathbf{I}_d^{\otimes (\mathsf{k}_\star/2-1)}]\in\mathbb{R}^{d\times d}$

$$egin{aligned} \mathsf{k}_{\star} \; ext{even:} & \widehat{m{M}} = rac{1}{m} \sum_{i \in [m]} \mathcal{T}(y_i) P_{\mathsf{k}_{\star}}(\|m{x}_i\|_2) \left[m{x}_i m{x}_i^{\mathsf{T}} - c_k \mathbf{I}_d
ight] \ & pprox rac{1}{m} \sum_{i \in [m]} \widetilde{\mathcal{T}}(y_i, \|m{x}_i\|_2) \left[rac{m{x}_i m{x}_i^{\mathsf{T}}}{\|m{x}_i\|_2^2} - rac{\mathbf{I}_d}{d}
ight] \end{aligned} \qquad ext{(spectral estimator)}.$$

Partial trace projects on optimal subspace $V_{d,2}$ (and $V_{d,1}$ for odd).

▶ Landscape smoothing and partial trace: if we normalize x, then sample complexity becomes $d^{k_{\star}-1}$ for both.

(The low frequencies $V_{d,1}/V_{d,2}$ are not optimal anymore.)

Summary: Gaussian single-index model

Advantages of this "harmonic analysis" perspectives:

- ▶ Natural basis to study single index-models:
 - It explicitly exploits the spherical symmetry of the problem.
 - Explicitly decompose function space by delineating (r, z) and harmonic degree. This has crucial algorithmic consequences.
 - More transparent derivation of optimal algorithms in the Gaussian setting.
- ▶ Recover generative exponent. Interpretation $d^{k/2+1}$ vs d^k runtime:
 - \longrightarrow harmonic subspaces $V_{d,1}, V_{d,2}$ /whether exploit the norm or not.
- Success of landscape smoothing/partial trace estimator:
 - \longrightarrow effectively project on optimal $V_{d,1}/V_{d,2}$ subspaces.

(These algo come from tensor PCA, with similar gap $d^{k/2+1}$ vs d^k ???)

- Does not use Gaussianity, only spherical invariance
 - \longrightarrow applies to general spherically symmetric distribution μ .
 - → there are new phenomena beyond Gaussian setting.

2 Learning multi-index models

[Koubbi, Latourelle-Vigeant, M.,???'25]

Multi-index models

- Label y now depends on a s-dimensional subspace $W_*^{\mathsf{T}} x$ with $W_*^{\mathsf{T}} W_* = \mathrm{I}_s$.
- ▶ Spherical multi-index models: unknown $W_* \in O(d,s)$ and

$$(y,x) \sim \mathbb{P}_{\boldsymbol{W}_*,\nu_d}: \quad x = (r,z) \sim \mu = \mu_R \otimes \tau_d \quad \text{and} \quad y|(r,z) \sim \nu_d(\cdot|r,\langle \boldsymbol{W}_*,z\rangle).$$

▶ Lower bounds for detection (within SQ and LDP):

Sample:
$$\mathsf{m} \gtrsim \inf_{\ell \geq 1} \frac{\sqrt{n_{d,\ell}}}{\|\xi_{d,\ell}\|_{L^2}^2}$$
, Runtime: $\mathsf{T} \gtrsim \inf_{\ell \geq 1} \frac{n_{d,\ell}}{\|\xi_{d,\ell}\|_{L^2}^2}$,

where
$$\xi_{d,\ell} := \mathsf{P}_{L^2(
u_{Y,R}) \otimes V_{d,\ell}} rac{\mathsf{d} \mathbb{P}_{oldsymbol{W}_*,
u_d}}{\mathsf{d} \mathbb{P}_{0,
u_d}}.$$

An example

$$y = \underbrace{\langle w_1, x
angle}_{\in V_{d,1}} + \underbrace{\operatorname{sign}(\langle w_1, x
angle \langle w_2, x
angle \cdots \langle w_k, x
angle)}_{\in V_{d,k}}.$$

- ► Algos:
 - On $V_{d,1}$: m \times d and T \times d² and recover w_1 .
 - lacksquare On $V_{d,k}$: $\mathsf{m} \asymp d^{k/2}$ and $\mathsf{T} \asymp d^k$ and recover $[\boldsymbol{w}_1,\ldots,\boldsymbol{w}_k]$.
- ▶ Optimal detection: it is enough to consider $V_{d,1}$. But can only recover w_1 . Full support recovery in one step using $V_{d,k}$.
- Optimal recovery algorithm: sequential adaptive learning of support
 - Step 1: on $V_{d,1}$ recover $\langle \hat{\boldsymbol{w}}_1, \boldsymbol{x} \rangle$: m \times d, T \times d².
 - Step 2: conditional on $\langle \hat{w}_1, x \rangle$, on $V_{d-1,k-1}$: $\mathsf{m} \asymp d^{(k-1)/2}$, $\mathsf{T} \asymp d^{k-1}$.

Total complexity: $m \asymp d^{(k-1)/2}$, $T \asymp d^{k-1}$.

Sequential learning

lacktriangle Optimal algorithms recover the support W_* sequentially:

$$\{0\} \subset U_1 \subset U_2 \subset \cdots \subset U_{q-1} \subset U_q = W_* \in \mathcal{O}(d,s)$$

 $lackbox{Conditional on having recovered } U^{\mathsf{T}}x$, we can decompose $(y,x) \sim \mathbb{P}_{W_*, \nu_d}$:

$$m{x} = m{U}^{\mathsf{T}} m{x} + (\|m{x}\|_2^2 - \|m{U}^{\mathsf{T}} m{x}\|_2^2)^{1/2} (\mathbf{I}_d - m{U} m{U}^{\mathsf{T}})^{1/2} m{z}, \qquad m{z} \sim \mathrm{Unif}(\mathbb{S}^{d-s_0-1}).$$

▶ Lower bounds for next step:

$$\begin{split} \text{Sample:} \quad & \mathsf{m} \, \gtrsim \, \inf_{\ell \geq 1} \, \frac{\sqrt{n_{d-s_0,\ell}}}{\|\xi_{d,\ell,U}\|_{L^2}^2}, \qquad \quad & \text{Runtime:} \quad \mathsf{T} \, \gtrsim \, \inf_{\ell \geq 1} \, \frac{n_{d-s_0,\ell}}{\|\xi_{d,\ell,U}\|_{L^2}^2}, \end{split}$$

$$\text{where } \xi_{d,\ell,U} := \mathsf{P}_{V_{d-s_0,\ell}} \tfrac{\mathsf{d} \mathbb{P}_{W_{\bullet},\nu_d}}{\mathsf{d} \mathbb{P}_{U,\nu_d}}.$$

lacksquare Using optimal ℓ : learn new directions $ilde{m{U}}$ and $m{U} o m{U}' = [m{U}, ilde{m{U}}].$

Leap complexities

▶ [Abbe, Boix-Adsera, M.,'23], [Bietti, Bruna, Pillaud-Vivien,'23], [Damian, Lee, Bruna,'25] "complexity of the worst subspace to recover"

$$\mathsf{m} \, \gtrsim \, \mathsf{Leap}_\mathsf{m}(
u_d), \qquad \mathsf{T} \gtrsim \, \mathsf{Leap}_\mathsf{T}(
u_d),$$

where

$$\begin{array}{ll} \text{sample-optimal leap:} & \mathsf{Leap_m}(\nu_d) = \sup_{U \subset W_*} \inf_{\ell \geq 1} \frac{d^{\ell/2}}{\|\xi_{d,\ell,U}\|_{L^2}^2}, \\ \\ \text{runtime-optimal leap:} & \mathsf{Leap_T}(\nu_d) = \sup_{U \subset W_*} \inf_{\ell \geq 1} \frac{d^\ell}{\|\xi_{d,\ell,U}\|_{L^2}^2}. \end{array}$$

- Matching algorithm on each $V_{d',\ell}$ using harmonic tensor unfolding. Both sample and (near-)runtime optimal on $V_{d',\ell}$.
- Whether we are sample or compute-constrained, might choose different ℓ .

 Sample-optimal and runtime-optimal algorithms will recover the support with different sequences $\{0\} \subset U_1 \subset \cdots \subset U_{q-1} \subset W_*$ and match these LBs.

2 General Framework

[Joshi, Koubbi, M., Nati,???'25]

Summary (I)

- ▶ Learning \mathcal{D} with \mathcal{G} -equivariant algos \iff Learning orbit $\mathcal{D}[\mathcal{G}] = \{\mathcal{D}^g : g \in \mathcal{G}\}.$
- Lower bounds within SQ and LDP:
 - "Weak learning": Alignment complexities

$$\begin{split} m \; \gtrsim \; \mathsf{Align}_m(\mathcal{D};\mathcal{G}) := \; \inf_{\hat{\rho} \in \hat{\mathcal{G}}_0} \; \frac{\sqrt{n_{\hat{\rho}}}}{Q_{\hat{\rho}}(\mathcal{D};\mathcal{G})}, \\ \mathsf{T} \; \gtrsim \; \mathsf{Align}_\mathsf{T}(\mathcal{D};\mathcal{G}) := \; \inf_{\hat{\rho} \in \hat{\mathcal{G}}_0} \; \frac{n_{\hat{\rho}}}{\mathsf{M}_{\hat{\rho}}(\mathcal{D};\mathcal{G})}. \end{split}$$

"Strong learning": Leap complexities

$$\begin{split} m \; \gtrsim \; \mathsf{Leap}_m(\mathcal{D};\mathcal{G}) &:= \sup_{\mathcal{H} \in \mathcal{S}_\varepsilon} \; \mathsf{Align}_m(\mathcal{D};\mathcal{H}), \\ \mathsf{T} \; \gtrsim \; \mathsf{Leap}_\mathsf{T}(\mathcal{D};\mathcal{G}) &:= \sup_{\mathcal{H} \in \mathcal{S}_\varepsilon} \; \mathsf{Align}_\mathsf{T}(\mathcal{D};\mathcal{H}). \end{split}$$

Worst-case complexity of learning subgroup \mathcal{H} .

Summary (II)

Optimal algorithms chosen at each step

$$\hat{\rho}_{\mathsf{m},\star} := \underset{\hat{\rho} \in \hat{\mathcal{H}}_0}{\mathsf{arg} \, \min} \ \frac{\sqrt{n_{\hat{\rho}}}}{\mathsf{Q}_{\hat{\rho}}(\mathcal{D};\mathcal{H})}, \qquad \hat{\rho}_{\mathsf{T},\star} := \underset{\hat{\rho} \in \hat{\mathcal{H}}_0}{\mathsf{arg} \, \min} \ \frac{n_{\hat{\rho}}}{\mathsf{M}_{\hat{\rho}}(\mathcal{D};\mathcal{H})}.$$

- Sequential adaptive learning of the group:
 - Nested sequence of subgroups:

$$\mathcal{G} =: \mathcal{H}^{(0)} \supset \mathcal{H}^{(1)} \supset \mathcal{H}^{(2)} \supset \cdots \supset \mathcal{H}^{(t+1)} = \{e\}.$$

■ Factorization of the group:

$$\mathcal{G} = (\mathcal{H}^{(0)}/\mathcal{H}^{(1)}) \times (\mathcal{H}^{(1)}/\mathcal{H}^{(2)}) \times \cdots \times (\mathcal{H}^{(t)}/\mathcal{H}^{(t+1)}).$$

- lacksquare To learn $g_*=(h_1^*,\ldots,h_t^*)\in\mathcal{G},$ learn sequentially $\hat{g}=(\hat{h}_1,\hat{h}_2,\ldots,\hat{h}_t).$
- ▶ Lower bounds in terms of generic properties of the group.

 Upper bounds: case by case analysis.

Example

$$f_*(x) = x_1 + x_1 x_2 x_3 x_4 + x_1 x_2 \cdots x_7 + x_1 x_2 x_3 \cdots x_{11}.$$

$$\mathfrak{S}_d \ \xrightarrow{d} \ \mathrm{Id}_1 \oplus \mathfrak{S}_{d-1} \ \xrightarrow{d^3} \ \mathrm{Id}_4 \oplus \mathfrak{S}_{d-4} \ \xrightarrow{d^3} \ \mathrm{Id}_7 \oplus \mathfrak{S}_{d-7} \ \xrightarrow{d^4} \ \mathrm{Id}_{11} \oplus \mathfrak{S}_{d-11}$$

[Abbe, Boix-Adsera, M.,'23]

Open questions

- ▶ This framework 'compactly' captures a number of phenomena, but it is far from a complete picture:
 - Systematic procedure to design optimal equivariant algorithms?
 - When do gradient-trained neural networks match these lower bounds?
 - Leap captures complexity of breaking a symmetry. How to capture other aspects? (e.g., μ that is non \mathcal{G} -invariant).
- Harmonic analysis: useful tool to decompose function spaces and finding optimal statistics of the data.
- Porbit classes $\mathcal{D}[\mathcal{G}]$ appear in many planted models: sparse PCA, tensor PCA, planted subgraphs, planted submatrix...
 - Many complexity gaps $d^{k/2}$ vs d^k between classes of algos in these models
 - For Gaussian SIMs, e.g., depends on using optimal harmonics $+ ||x||_2$.