
Wedges are all you need: sparser and sparser

tensor completion

Ludovic Stephan

ENSAI - CREST

Hengrui Luo

Rice University

Anna Ma

UC Irvine

Yizhe Zhu

USC



What is tensor completion ?

Tensor T

subsampling−−−−−−→

Observed tensor T̃

• T is an order-k tensor of size n × · · · × n

• The observed tensor T̃ is defined as

T̃i1,...,ik =

Ti1,...,ik with probability p

0 with probability 1− p

• Goal: Exactly/approximately recover T from T̃ with very few samples

(with an efficient algorithm)
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Why do we care?

Typical appplications: recommendation systems

• Each axis represents a modality: users, movies/food, time of day...

• Revealed entries are feedback, e.g. ratings

• Goal: predict how a (new) user will rate an item at a specific time

2



Model assumptions

Too many degrees of freedom!

Too localized!

• T has low CP-rank:

T =
r∑

i=1

λi

(
w

(1)
i ⊗ · · · ⊗ w

(k)
i

)
⇒ r × kn degrees of freedom

• T is delocalized:

∥w (j)
i ∥∞ ≃ n−1/2
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Computational hardness

Computational complexity problem: most tensor problems are hard [Hillar-Lim

’09]

• spectral norm

• eigenvalues/singular values

• low-rank approximations

4



Unfolding

k-tensor (size n × · · · × n)

unfolda,b−−−−−→

nb

na

Unfolding matrix (size na × nb)
“Grouping” indices:

M(i1,...,ia),(ia+1,...,ik ) = Ti1,...,ik

Tensor completion on T ⇐ Matrix completion on M

If k is even: square matrix of size nk/2 =⇒ Õ(nk/2) samples suffice

If k is odd: matrix of size n⌊k/2⌋ × n⌈k/2⌉
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Statistical-computational gap for random tensors

• NP-hard algorithms: tensor-based norm minimization methods without

unfolding

[Yuan and Zhang ’16, Ghadermarzy et al ’19, Harris and Zhu ’21]

→ works with Õ(n) samples

• Unfolding-based algorithms with spectral initialization

[Montanari and Sun ’16, Liu and Moitra ’20, Cai et al. ’21...]

→ works with Õ(nk/2) samples

• Similar gaps in the spiked tensor model T = λv⊗q + Z

[Montanari and Richard ’14, Ben Arous et al. ’17, Chen ’18, Ben Arous

et al. ’18, Wein et al. ’19, Perry et al. ’20. . . ]

IMPOSSIBLE HARD EASY

p ≍ n−(k−1) p ≍ n−k/2

Sampling

probability
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Basic unfolding algorithm

Commonly poly-time algorithms: unfolding-based

• Unfold T̃ into A ∈ Rn×n2

• Spectral initialization: truncated SVD of the hollowed matrix

AA⊤ − diag(AAT )

• Post-processing: projection [Montanari and Sun ’18], tensor power

iteration [Xia et al ’21], gradient descent [Xia and Yuan ’19,

Cai et al. ’21]

→ works until p = O(n−k/2× polylog(n))

What happens if p ∝ n−k/2 ?
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Not a trivial challenge

Figure: T = v ⊗ v ⊗ v ,AA⊤ − diag(AA⊤), p = 20n−3/2
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A random graph theory explanation

A ∈ Rn×n2 corresponds to a (weighted) random bipartite graph with

V1 = [n],V2 = [n2].

V2 = [n2]

V1 = [n]
i1 i2 i3

k1 k2 k3 k4 k5

10



A random graph theory explanation

Hollowed matrix counts walks of length 2, V1 → V2 → V1:

(AA⊤)ij =
∑
k

AikAjk .

h(AA⊤) can be seen as the adjacency matrix of a new graph G̃ (dashed edges).

V2 = [n2]

V1 = [n]
i1 i2 i3

k1 k2 k3 k4 k5
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A random graph theory explanation

Fact: G̃ is still sparse (average degree d2 for p = dn−k/2).

In the unweighted (Erdős-Rényi) case:

• if d2 ≳
√

log(n)
log log(n)

: spectrum of G̃ concentrates [Feige and Ofek ’05,

Benaych-Georges et al. ’20]

• if d2 ≪
√

log(n)
log log(n)

: no concentration, spectrum dominated by high-degree

vertices [Benaych-Georges et al. ’19]

⇒ Naive unfolding (probably) doesn’t work
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A detour through community detection

Community detection in stochastic block models G(n, a
n
, b
n
).

• Unknown partition σ ∈ {−1, 1}n. Generate a random graph G = ([n],E).

i , j is connected with probability p = a
n
if σi = σj and with probability

q = b
n
otherwise.

• goal: recover σ from G

=⇒

13



A detour through community detection

E[A] is low-rank, and v2(E[A]) = σ ⇒ spectral method on A?

No!
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High-degree vertices dominate the spectrum. v2 localized around high-degree

vertices.

[Krivelevich and Sudakov ’01, Benaych-Georges et al. ’19, Alt et al. ’23]
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Non-backtracking matrix for graphs

Proposed in [Krzakala et al. ’13]

Defined on the oriented edges of G :

E⃗ = {u → v : {u, v} ∈ E}, |E⃗ | = 2|E |.

The non-backtracking matrix B is defined: for u → v , x → y ∈ E⃗ ,

Bu→v,x→y = 1v=x1u ̸=y .

✓ ✗
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Non-backtracking spectral method

−2 −1 0 1 2 3 4
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√
d+ o(1)
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• If (a− b)2 > 2(a+ b), then the second eigenvector of B can be used to

detect the community structure. [Bordenave, Lelarge, Massoulié ’18]

• B is non-Hermitian: avoid the localization effect from high degree

vertices when G is very sparse.

• Can be generalized for estimating a low-rank structure from sparse

observations with O(n) many samples [S.-Massoulié ’23].

In particular: very sparse matrix completion !

[Bordenave-Coste-Nadakuditi ’23]
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A new non-backtracking

matrix for sparse long matrices



Long matrix completion

• Rectangular matrix M of size n ×m (m ≫ n), with SVD

M =
r∑

i=1

νiϕiψ
⊤
i , MM⊤ =

r∑
i=1

ν2i ϕiϕ
⊤
i

• Masking matrix X with Xij ∼ Ber(p), p = d√
mn

• Observed matrix:

A =
X ◦M

p
so that E[A] = M

Assumptions:

r ,
√
n∥ϕi∥∞ = O(polylog(n))

Goal: estimate singular values and left singular vectors of M: νi , ϕi , with

sample size O(
√
mn)

Estimating the full SVD of M needs Ω(m) samples [Koltchinskii et al. ’11]
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Graph and folded graph

G : bipartite graph on V1 × V2, adjacency matrix X

G̃ : (multi)-graph on V1, adjacency matrix XX⊤

V2 = [m]

V1 = [n]
i1 i2 i3

k1 k2 k3 k4 k5

G

G̃

18



Non-backtracking wedge matrix

First idea: take the (weighted) non-backtracking matrix of G̃ ⇒ doesn’t work

Better idea: work directly on oriented wedges in G

E⃗2 = {(x , y , z) ∈ V1 × V2 × V1, z ̸= x}

x

y

z

⇒ E⃗2 has size ∼ n2mp2 = d2n: independent from m

19
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Non-backtracking wedge matrix

Define B indexed by E⃗ as

Bef =

Af1f2Af3f2 if e3 = f1 and e2 ̸= f2

0 otherwise

e1

e2

f1

f2

f3

e f

e, f form a non-backtracking walk of length 4, starting from V1, ending in V1.

20
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Results

Theorem (S.-Zhu ’24)

Assume that p ∝ d√
mn

, with d large enough. Then with high probability, the

top eigenvalues (resp. eigenvectors) of B are correlated with the νi and ϕi , in

the sense that we can build estimates λi , ξi satisfying

λi = νi + o(1) and ⟨ξi , ϕi ⟩2 = 1− O

(
1

d

)
+ o(1)

When M = unfold(T ), we can achieve weak recovery of T , and almost exact

recovery (∥T − T̂∥ = o(1)) when d → ∞!

21



Results: eigenvalues

Figure: Spectrum of B, d = 3

22



Results: eigenvectors

Figure: Top eigenvector of B, d = 3

23



Wedge sampling



Lessons from before

Studying AA⊤ ⇔ studying wedges

All non-wedges (vertices in V2 with degree 1) are useless!

Uniform sampling: O(nk/2) degree-one vertices, O(n) wedges...

What if we could only sample ‘useful’ edges?

24
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Wedge sampling

Sample from the wedge set

W = [n]× [m]× [n]

with probability p = 1
mn

× polylog(n) → sampled set W̃

For each wedge (i , k, j), reveal Aik and Ajk

mn2 possible wedges, p ≲ 1
mn

, two entries revealed per wedge

⇒ Õ(n) samples!

25



Spectral initialization

Initial spectral estimator:

B̃ =
∑

(i,k,j)∈W̃

AikAjk .

Theorem (Luo, Ma, S., Zhu ’25)

Let p ≳ 1
mn

and A ∈ Rn×m a low-rank delocalized matrix. Then with high

probability,

∥B̃ − AA⊤∥ ≲

√
log(n)

pnm
∥A∥2

Further, if A = UΣV⊤ and B̃ = ŨΣ̃Ṽ⊤, then

min
O∈Or

∥ŨrO − U∥2,∞ ≲

√
log(n)

pnm
∥U∥2,∞

where Ũr contains the top r eigenvectors of B̃.

26



Ilustration

Figure: Recovery performance for a rank-one tensor

27



Refinement

Previous works [Haselby et al. ’24]: end-to-end algorithm adapted to the

sampling scheme.

Our idea: sample splitting

• wedge sampling for initialization

• sparse uniform sampling (p ∝ n−(k−1)) with existing algorithms

[Montanari and Sun ’18, Cai et al. ’21]

Theorem (Luo, Ma, S., Zhu ’25)

Once the initial estimate Ũr of U is obtained, the refinement methods of

[Montanari and Sun ’18, Cai et al ’21] only require Õ(n) uniform samples to

recover T

Hardest step is initial alignment [Ben Arous et al ’21]
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Under the hood

Core property for the refinement step: concentration in spectral norm

∥p−1T̃ − T∥ ≲
1

nk/2p
∥T∥

Problem: this is sharp!

∥p−1T̃∥ ≳ ∥p−1T̃∥∞ ≳
1

nk/2p
∥T∥

⇒ no concentration for p ≪ n−k/2...

29



Delocalized norm of tensors

Main idea:

∥T∥ = max
∥ui∥≤1

⟨T , u1 ⊗ · · · ⊗ uk⟩,

but

• ∥p−1T̃∥ is attained for ui = eji (basis vectors)

• in the proofs, usually almost all of the ui are delocalized!

New norm: for δ ∈ Rk ,

∥T∥δ = sup
j1,j2∈[k]

sup
(u1,...,uk )∈Uj1 j2

⟨T , u1 ⊗ · · · ⊗ uk⟩

where

Uj1j2 = {(u1, . . . , uk) : ∥ui∥ ≤ 1 ∀i , ∥uj∥∞ ≤ δj ∀j ̸= j1, j2}

30



Delocalized norm concentration

Concentration on much sparser tensors for ∥ · ∥δ:

Theorem (Yuan and Zhang ’17, Luo, Ma, S., Zhu ’25)

Assume that δi ≲ n−1/2 for all i ∈ [k]. Then for any low-rank delocalized

tensor T , with high probability

∥p−1T̃ − T∥δ ≲

√
log(d)

nk−1p
∥T∥δ ≲

√
log(d)

nk−1p
∥T∥

Already used for non-polynomial tensor completion, never for the polynomial

case!
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Is it viable?

Not only viable... but natural!

Sampling (i , k, j) ⇔ fixing all modalities but one

Core principle of experimental design!
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Thank you!
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