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What is tensor completion ?

subsampling

Tensor T Observed tensor T
e T is an order-k tensor of size n X --- X n
e The observed tensor T is defined as
Ti,...i, with probability p
0 with probability 1 — p

e Goal: Exactly/approximately recover T from T with very few samples
(with an efficient algorithm) 1



Why do we care?
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Typical appplications: recommendation systems

e Each axis represents a modality: users, movies/food, time of day...
e Revealed entries are feedback, e.g. ratings

e Goal: predict how a (new) user will rate an item at a specific time
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Too many degrees of freedom!



Model assumptions

Too many degrees of freedom! Too localized!
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T=>x(we - ow?)
i=1

= r x kn degrees of freedom



Model assumptions

Too many degrees of freedom!

Too localized!
e T has low CP-rank:

T=>x(we - ow?)
i=1

= r x kn degrees of freedom
e T is delocalized:

W oo =~ ™/



Computational hardness

Computational complexity problem: most tensor problems are hard [Hillar-Lim
'09]

e spectral norm

e cigenvalues/singular values

e low-rank approximations



Unfolding
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Unfolding

unfold, 4

k-tensor (size n X --- X n)

“Grouping” indices:
M
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Tensor completion on T
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Unfolding

unfold, 4 a

Sy
b
k-tensor (size n X --- X n)

Unfolding matrix (size n® x n®)
“Grouping” indices:
M

i1yeeesia) (a4 150 osik) —

Tensor completion on T Matrix completion on M

If k is even: square matrix of size n“/2 = O(n*/?) samples suffice
If k is odd: matrix of size nt</2) x pl*/2]



Statistical-computational gap for random tensors

e NP-hard algorithms: tensor-based norm minimization methods without

unfolding
[Yuan and Zhang '16, Ghadermarzy et al '19, Harris and Zhu '21]

— works with O(n) samples
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Statistical-computational gap for random tensors

e NP-hard algorithms: tensor-based norm minimization methods without
unfolding
[Yuan and Zhang '16, Ghadermarzy et al '19, Harris and Zhu '21]
— works with O(n) samples

e Unfolding-based algorithms with spectral initialization
[Montanari and Sun '16, Liu and Moitra '20, Cai et al. "21.. ]
— works with O(n*/?) samples

e Similar gaps in the spiked tensor model T = Av®7 4 Z
[Montanari and Richard '14, Ben Arous et al. '17, Chen '18, Ben Arous
et al. '18, Wein et al. '19, Perry et al. '20...]

IMPOSSIBLE EASY

| | o Sampling

I I ¥ probability

p= D



Basic unfolding algorithm

Commonly poly-time algorithms: unfolding-based

e Unfold T into A € R"™*"

e Spectral initialization: truncated SVD of the hollowed matrix
AAT — diag(AAT)

e Post-processing: projection [Montanari and Sun '18], tensor power
iteration [Xia et al '21], gradient descent [Xia and Yuan '19,
Cai et al. '21]

— works until p = O(n=%/2x polylog(n))



Basic unfolding algorithm

Commonly poly-time algorithms: unfolding-based

e Unfold T into A € R"™*"

e Spectral initialization: truncated SVD of the hollowed matrix
AAT — diag(AAT)

e Post-processing: projection [Montanari and Sun '18], tensor power
iteration [Xia et al '21], gradient descent [Xia and Yuan '19,
Cai et al. '21]

— works until p = O(n=%/2x polylog(n))

What happens if p oc n=%/2 2



Not a trivial challenge
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Figure: T=v®v®v,AAT —diag(AAT), p = 20n=3/?



Not a trivial challenge
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Figure: T=v®v®v,AAT —diag(AAT), p = 20n=3/?



Not a trivial challenge

Figure: AAT — diag(AAT), p =2n=3/2



Not a trivial challenge
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Figure: AAT — diag(AAT), p =2n=3/2



A random graph theory explanation

A e R corresponds to a (weighted) random bipartite graph with
Vi= [n]7 Vo = [nz]‘

Vs = [n?]

10



A random graph theory explanation

Hollowed matrix counts walks of length 2, Vi — Vo, — Vi:

(AAT); = AwAi.
k

h(AAT) can be seen as the adjacency matrix of a new graph G (dashed edges).

Vs = [n?]

11



A random graph theory explanation

Fact: G is still sparse (average degree d for p = dn=*/?).

In the unweighted (Erd8s-Rényi) case:

o if d®> Iolgolgo(gn()n): spectrum of G concentrates [Feige and Ofek '05,

Benaych-Georges et al. '20]

o if d®> < lo6(") . o concentration, spectrum dominated by high-degree
log log(n)

vertices [Benaych-Georges et al. '19]
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A random graph theory explanation

Fact: G is still sparse (average degree d for p = dn=*/?).

In the unweighted (Erd8s-Rényi) case:

o if d®> Iolgolgo(gn()n): spectrum of G concentrates [Feige and Ofek '05,

Benaych-Georges et al. '20]

o if d®> < lo6(") . o concentration, spectrum dominated by high-degree
log log(n)

vertices [Benaych-Georges et al. '19]

= Naive unfolding (probably) doesn't work

12



A detour through community detection

Community detection in stochastic block models G(n, 2, S)

e Unknown partition o € {—1,1}". Generate a random graph G = ([n], E).
i,j is connected with probability p = 2 if o; = o; and with probability

q= l;’ otherwise.

e goal: recover o from G

13



A detour through community detection

E[A] is low-rank, and v»(E[A]) = o = spectral method on A?

14



A detour through community detection

E[A] is low-rank, and v2(E[A]) = o = spectral method on A? No!
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High-degree vertices dominate the spectrum. v, localized around high-degree
vertices.

[Krivelevich and Sudakov '01, Benaych-Georges et al. '19, Alt et al. '23]
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Non-backtracking matrix for graphs

Proposed in [Krzakala et al. '13]

Defined on the oriented edges of G:

E={u—v:{uv}eE}I|E =2|E|

ii5)
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Non-backtracking matrix for graphs

Proposed in [Krzakala et al. '13]

Defined on the oriented edges of G:

E={u—v:{uv}eE}I|E =2|E|

The non-backtracking matrix B is defined: for u — v,x = y € E

Bu~>v,x~>y = 1v:x1u#y‘

ii5)



Non-backtracking spectral method

T T T T T T T T T T T T
-2 -1 0 1 2 3 4 0 500 1,000 1,500 2,000

o If (a— b)? > 2(a+ b), then the second eigenvector of B can be used to
detect the community structure. [Bordenave, Lelarge, Massoulié 18]

16



Non-backtracking spectral method

4 6 560 1,600 1,5;00 2,600

o If (a— b)? > 2(a+ b), then the second eigenvector of B can be used to
detect the community structure. [Bordenave, Lelarge, Massoulié 18]

e B is non-Hermitian: avoid the localization effect from high degree

vertices when G is very sparse.
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Non-backtracking spectral method

7‘2 7‘1 6 { é é 4‘1 6 560 1,600 1,5;00 2,600

o If (a— b)? > 2(a+ b), then the second eigenvector of B can be used to
detect the community structure. [Bordenave, Lelarge, Massoulié 18]

e B is non-Hermitian: avoid the localization effect from high degree
vertices when G is very sparse.

e Can be generalized for estimating a low-rank structure from sparse
observations with O(n) many samples [S.-Massoulié '23].
In particular: very sparse matrix completion !
[Bordenave-Coste-Nadakuditi '23]

16



A new non-backtracking
matrix for sparse long matrices




Long matrix completion

e Rectangular matrix M of size n x m (m > n), with SVD
M=>"vig’, MMT =31
i=1 i=1

e Masking matrix X with Xj ~ Ber(p), p = ﬁnﬁ

o Observed matrix:

A= X‘;M so that E[A] = M

17
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Long matrix completion

e Rectangular matrix M of size n x m (m > n), with SVD
M=>"vig’, MMT =31
i=1 i=1

e Masking matrix X with Xj ~ Ber(p), p = ﬁnﬁ

o Observed matrix:

A:XOM

so that E[A] =M

Assumptions:

r,vV/nll¢ille = O(polylog(n))

Goal: estimate singular values and left singular vectors of M: v, ¢;, with

sample size O(y/mn)
Estimating the full SVD of M needs Q(m) samples [Koltchinskii et al. '11]
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Graph and folded graph

G: bipartite graph on V4 x V5, adjacency matrix X

G: (multi)-graph on V4, adjacency matrix XX "

Vo = [m]

18



Non-backtracking wedge matrix

First idea: take the (weighted) non-backtracking matrix of G = doesn’t work
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First idea: take the (weighted) non-backtracking matrix of G = doesn’t work

Better idea: work directly on oriented wedges in G

52:{(X»y72)€ Vi x Vo x Wi,z # x}
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Non-backtracking wedge matrix

First idea: take the (weighted) non-backtracking matrix of G = doesn’t work

Better idea: work directly on oriented wedges in G

52:{(X»y72)€ Vi x Vo x Wi,z # x}

®
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Non-backtracking wedge matrix

First idea: take the (weighted) non-backtracking matrix of G = doesn’t work

Better idea: work directly on oriented wedges in G

5:{(X7y72)€ Vi x Vo x Wi,z # x}

®

= E, has size ~ n*mp? = d*n: independent from m

19



Non-backtracking wedge matrix

Define B indexed by E as

AfleAfoz if €3 — f1 and €9, 3& f2

0 otherwise

Bef -

20



Non-backtracking wedge matrix

Define B indexed by E as

AfleAfoz if €3 — f1 and €9, 3& f2

0 otherwise

Bef -

e, f form a non-backtracking walk of length 4, starting from V4, ending in V;.

20



Theorem (S.-Zhu '24)

Assume that p \/%, with d large enough. Then with high probability, the

top eigenvalues (resp. eigenvectors) of B are correlated with the v; and ¢;, in
the sense that we can build estimates \;, &; satisfying

M=vi+o(l) and (6,¢)2=1-0 (%) +o(1)

When M = unfold(T), we can achieve weak recovery of T, and almost exact
recovery (|| T — T| = o(1)) when d — ol

21



Results: eigenvalues
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Figure: Spectrum of B,d =3
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Results: eigenvectors

0 10000 20000 30000

Figure: Top eigenvector of B,d = 3
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Wedge sampling




Lessons from before

Studying AAT < studying wedges
All non-wedges (vertices in V> with degree 1) are useless!

Uniform sampling: O(n*/?) degree-one vertices, O(n) wedges...
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Lessons from before

Studying AAT < studying wedges
All non-wedges (vertices in V> with degree 1) are useless!

Uniform sampling: O(n*/?) degree-one vertices, O(n) wedges...

What if we could only sample ‘useful’ edges?

24



Wedge sampling

Sample from the wedge set
W = [n] x [m] x [n]

with probability p = -1 x polylog(n) — sampled set W

For each wedge (i, k, j), reveal Aj and Aj

mn? possible wedges, p < -1, two entries revealed per wedge

~ mn’

— O(n) samples!

25



Spectral initialization

Initial spectral estimator:

> AwAi.
(i k)W
Theorem (Luo, Ma, S., Zhu ’25)

Let p > — and A € R"™"™ a low-rank delocalized matrix. Then with high

~ mn

probability,

= log(n
18— AAT) 5 |/ a2
Further, if A= UXV " and B = UXV", then

min || 0,0 — Ul|2.00 < log(n) v
0€0, n

1U]l2,00

where U, contains the top r eigenvectors of B.

26



llustration

® Uniform
® Wedge

Error = |<\hat{u}, u>|

0 I I I I I I I I I ]
0 0.001 0002 0.003 0004 0005 0006 0.007 0008 0.009 0.01

Sample rate = \X)\/n3

Figure: Recovery performance for a rank-one tensor
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Previous works [Haselby et al. '24]: end-to-end algorithm adapted to the
sampling scheme.

Our idea: sample splitting

e wedge sampling for initialization

e sparse uniform sampling (p nf(kfl)) with
[Montanari and Sun '18, Cai et al. '21]

Theorem (Luo, Ma, S., Zhu ’25)

Once the initial estimate U, of U is obtained, the refinement methods of

[Montanari and Sun 18, Cai et al '21] only require O(n) uniform samples to
recover T

Hardest step is [Ben Arous et al '21]

28



Under the hood

Core property for the refinement step: concentration in spectral norm

= 1
P~ T-TIZ m”TH
Problem: this is sharp!

=) &= —1] &2 1
T\ Z Tleo 2 ——IIT
P TR NP Tlleo & 27z 1T

= no concentration for p < n~*/2..

29



Delocalized norm of tensors

Main idea:

1Tl = m‘?X<T ne - ® ),

but

o ||p71T| is attained for u; = e; (basis vectors)

e in the proofs, usually almost all of the u; are delocalized!

New norm: for § € R,

IThs = sp ~sup (T, @@uy)
J1.h2€[K] (”1""7”k)el/{j1j2

where
Upjy = {(un, ooy ui) = ol 1V lujlloo <05 Y # 1,2}

30



Delocalized norm concentration

Concentration on much sparser tensors for || - ||5:

Theorem (Yuan and Zhang ’17, Luo, Ma, S., Zhu ’25)

Assume that §; < n='/2 for all i € [k]. Then for any low-rank delocalized
tensor T, with high probability

D) s 5 o/ L2y 7y

I~ T = Tls <

Already used for non-polynomial tensor completion, never for the polynomial
case!

31



Is it viable?

Not only viable... but natural!
Sampling (i, k,j) < fixing all modalities but one

Core principle of experimental design!

32



Thank youl!
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