Wedges are all you need: sparser and sparser tensor completion

Ludovic Stephan

ENSAI - CREST

Hengrui Luo Rice University

Anna Ma UC Irvine

Yizhe Zhu USC

What is tensor completion?

What is tensor completion?

- T is an order-k tensor of size $n \times \cdots \times n$
- ullet The observed tensor $ilde{\mathcal{T}}$ is defined as

$$\tilde{T}_{i_1,...,i_k} = \begin{cases} T_{i_1,...,i_k} & \text{with probability } p \\ 0 & \text{with probability } 1-p \end{cases}$$

• Goal: Exactly/approximately recover T from \tilde{T} with very few samples (with an efficient algorithm)

Why do we care?

Typical appplications: recommendation systems

- Each axis represents a modality: users, movies/food, time of day...
- Revealed entries are feedback, e.g. ratings
- Goal: predict how a (new) user will rate an item at a specific time

Too many degrees of freedom!

Too many degrees of freedom!

Too many degrees of freedom!

Too localized!

• T has low CP-rank:

$$T = \sum_{i=1}^{r} \lambda_{i} \left(w_{i}^{(1)} \otimes \cdots \otimes w_{i}^{(k)} \right)$$

 $\Rightarrow r \times kn$ degrees of freedom

Too localized!

Too many degrees of freedom!

• T has low CP-rank:

$$T = \sum_{i=1}^{r} \lambda_{i} \left(w_{i}^{(1)} \otimes \cdots \otimes w_{i}^{(k)} \right)$$

 $\Rightarrow r \times kn$ degrees of freedom

• T is delocalized:

$$||w_i^{(j)}||_{\infty} \simeq n^{-1/2}$$

Computational hardness

Computational complexity problem: most tensor problems are hard [Hillar-Lim '09]

- spectral norm
- eigenvalues/singular values
- low-rank approximations

Unfolding

 $\xrightarrow{\mathsf{unfold}_{a,b}}$

k-tensor (size $n \times \cdots \times n$)

Unfolding matrix (size $n^a \times n^b$)

"Grouping" indices:

$$M_{(i_1,...,i_a),(i_{a+1},...,i_k)} = T_{i_1,...,i_k}$$

Unfolding

Tensor completion on $T \leftarrow Matrix$ completion on M

Unfolding

 $\xrightarrow{\text{unfold}_{a,b}}$

k-tensor (size $n \times \cdots \times n$)

Unfolding matrix (size $n^a \times n^b$)

"Grouping" indices:

$$M_{(i_1,...,i_a),(i_{a+1},...,i_k)} = T_{i_1,...,i_k}$$

Tensor completion on $T \leftarrow Matrix$ completion on M

If k is even: square matrix of size $n^{k/2} \Longrightarrow \tilde{O}(n^{k/2})$ samples suffice If k is odd: matrix of size $n^{\lfloor k/2 \rfloor} \times n^{\lceil k/2 \rceil}$

Statistical-computational gap for random tensors

 NP-hard algorithms: tensor-based norm minimization methods without unfolding

[Yuan and Zhang '16, Ghadermarzy et al '19, Harris and Zhu '21] \to works with $\tilde{O}(n)$ samples

Statistical-computational gap for random tensors

 NP-hard algorithms: tensor-based norm minimization methods without unfolding

```
[Yuan and Zhang '16, Ghadermarzy et al '19, Harris and Zhu '21] \to works with \tilde{O}(n) samples
```

• Unfolding-based algorithms with spectral initialization [Montanari and Sun '16, Liu and Moitra '20, Cai et al. '21...] \rightarrow works with $\tilde{O}(n^{k/2})$ samples

Statistical-computational gap for random tensors

- NP-hard algorithms: tensor-based norm minimization methods without unfolding
 - [Yuan and Zhang '16, Ghadermarzy et al '19, Harris and Zhu '21] \rightarrow works with $\tilde{O}(n)$ samples
- Unfolding-based algorithms with spectral initialization [Montanari and Sun '16, Liu and Moitra '20, Cai et al. '21...] \rightarrow works with $\tilde{O}(n^{k/2})$ samples
- Similar gaps in the spiked tensor model $T = \lambda v^{\otimes q} + Z$ [Montanari and Richard '14, Ben Arous et al. '17, Chen '18, Ben Arous et al. '18, Wein et al. '19, Perry et al. '20...]

Basic unfolding algorithm

Commonly poly-time algorithms: unfolding-based

- Unfold \tilde{T} into $A \in \mathbb{R}^{n \times n^2}$
- Spectral initialization: truncated SVD of the hollowed matrix $AA^{\top} \operatorname{diag}(AA^{T})$
- Post-processing: projection [Montanari and Sun '18], tensor power iteration [Xia et al '21], gradient descent [Xia and Yuan '19, Cai et al. '21]
- \rightarrow works until $p = O(n^{-k/2} \times \text{polylog}(n))$

Basic unfolding algorithm

Commonly poly-time algorithms: unfolding-based

- Unfold \tilde{T} into $A \in \mathbb{R}^{n \times n^2}$
- Spectral initialization: truncated SVD of the hollowed matrix $AA^{\top} \operatorname{diag}(AA^{T})$
- Post-processing: projection [Montanari and Sun '18], tensor power iteration [Xia et al '21], gradient descent [Xia and Yuan '19, Cai et al. '21]
- ightarrow works until $p = O(n^{-k/2} imes ext{polylog}(n))$ What happens if $p \propto n^{-k/2}$?

Figure: $T = v \otimes v \otimes v, AA^{\top} - \operatorname{diag}(AA^{\top}), p = 20n^{-3/2}$

Figure: $T = v \otimes v \otimes v, AA^{\top} - \operatorname{diag}(AA^{\top}), p = 20n^{-3/2}$

Figure: $AA^{\top} - \operatorname{diag}(AA^{\top}), p = 2n^{-3/2}$

Figure: $AA^{\top} - \operatorname{diag}(AA^{\top}), p = 2n^{-3/2}$

 $A \in \mathbb{R}^{n \times n^2}$ corresponds to a (weighted) random bipartite graph with $V_1 = [n], V_2 = [n^2]$.

Hollowed matrix counts walks of length 2, $V_1
ightarrow V_2
ightarrow V_1$:

$$(AA^{\top})_{ij} = \sum_{k} A_{ik} A_{jk}.$$

 $h(AA^{ op})$ can be seen as the adjacency matrix of a new graph \tilde{G} (dashed edges).

Fact: \tilde{G} is still sparse (average degree d^2 for $p = dn^{-k/2}$).

In the unweighted (Erdős-Rényi) case:

- if $d^2 \gtrsim \sqrt{\frac{\log(n)}{\log\log(n)}}$: spectrum of \tilde{G} concentrates [Feige and Ofek '05, Benaych-Georges et al. '20]
- if $d^2 \ll \sqrt{\frac{\log(n)}{\log\log(n)}}$: no concentration, spectrum dominated by high-degree vertices [Benaych-Georges et al. '19]

Fact: \tilde{G} is still sparse (average degree d^2 for $p = dn^{-k/2}$).

In the unweighted (Erdős-Rényi) case:

- if $d^2 \gtrsim \sqrt{\frac{\log(n)}{\log\log(n)}}$: spectrum of \tilde{G} concentrates [Feige and Ofek '05, Benaych-Georges et al. '20]
- if $d^2 \ll \sqrt{\frac{\log(n)}{\log\log(n)}}$: no concentration, spectrum dominated by high-degree vertices [Benaych-Georges et al. '19]

⇒ Naive unfolding (probably) doesn't work

A detour through community detection

Community detection in stochastic block models $\mathcal{G}(n, \frac{a}{n}, \frac{b}{n})$.

- Unknown partition $\sigma \in \{-1,1\}^n$. Generate a random graph G = ([n], E). i,j is connected with probability $p = \frac{a}{n}$ if $\sigma_i = \sigma_j$ and with probability $q = \frac{b}{n}$ otherwise.
- goal: recover σ from G

A detour through community detection

 $\mathbb{E}[A]$ is low-rank, and $v_2(\mathbb{E}[A]) = \sigma \Rightarrow$ spectral method on A?

A detour through community detection

 $\mathbb{E}[A]$ is low-rank, and $v_2(\mathbb{E}[A]) = \sigma \Rightarrow$ spectral method on A? **No!**

High-degree vertices dominate the spectrum. \emph{v}_2 localized around high-degree vertices.

[Krivelevich and Sudakov '01, Benaych-Georges et al. '19, Alt et al. '23]

Non-backtracking matrix for graphs

Proposed in [Krzakala et al. '13]

Defined on the oriented edges of G:

$$\vec{E} = \{u \to v : \{u, v\} \in E\}, |\vec{E}| = 2|E|.$$

Non-backtracking matrix for graphs

Proposed in [Krzakala et al. '13]

Defined on the oriented edges of G:

$$\vec{E} = \{u \to v : \{u, v\} \in E\}, |\vec{E}| = 2|E|.$$

The non-backtracking matrix B is defined: for $u \to v, x \to y \in \vec{E}$,

$$B_{u \to v, x \to y} = \mathbf{1}_{v=x} \mathbf{1}_{u \neq y}.$$

Non-backtracking matrix for graphs

Proposed in [Krzakala et al. '13]

Defined on the oriented edges of *G*:

$$\vec{E} = \{u \to v : \{u, v\} \in E\}, |\vec{E}| = 2|E|.$$

The non-backtracking matrix B is defined: for $u \to v, x \to y \in \vec{E}$,

$$B_{u \to v, x \to y} = \mathbf{1}_{v=x} \mathbf{1}_{u \neq y}$$
.

Non-backtracking spectral method

• If $(a-b)^2>2(a+b)$, then the second eigenvector of B can be used to detect the community structure. [Bordenave, Lelarge, Massoulié '18]

Non-backtracking spectral method

- If $(a-b)^2 > 2(a+b)$, then the second eigenvector of B can be used to detect the community structure. [Bordenave, Lelarge, Massoulié '18]
- B is non-Hermitian: avoid the localization effect from high degree vertices when G is very sparse.

Non-backtracking spectral method

- If $(a b)^2 > 2(a + b)$, then the second eigenvector of B can be used to detect the community structure. [Bordenave, Lelarge, Massoulié '18]
- B is non-Hermitian: avoid the localization effect from high degree vertices when G is very sparse.
- Can be generalized for estimating a low-rank structure from sparse observations with O(n) many samples [S.-Massoulié '23].
 In particular: very sparse matrix completion!
 [Bordenave-Coste-Nadakuditi '23]

A new non-backtracking

matrix for sparse long matrices

Long matrix completion

• Rectangular matrix M of size $n \times m \ (m \gg n)$, with SVD

$$M = \sum_{i=1}^{r} \nu_i \phi_i \psi_i^{\mathsf{T}}, \quad MM^{\mathsf{T}} = \sum_{i=1}^{r} \nu_i^2 \phi_i \phi_i^{\mathsf{T}}$$

- Masking matrix X with $X_{ij} \sim \mathsf{Ber}(p)$, $p = \frac{d}{\sqrt{mn}}$
- Observed matrix:

$$A = \frac{X \circ M}{p}$$
 so that $\mathbb{E}[A] = M$

Long matrix completion

• Rectangular matrix M of size $n \times m \ (m \gg n)$, with SVD

$$M = \sum_{i=1}^{r} \nu_i \phi_i \psi_i^{\mathsf{T}}, \quad MM^{\mathsf{T}} = \sum_{i=1}^{r} \nu_i^2 \phi_i \phi_i^{\mathsf{T}}$$

- Masking matrix X with $X_{ij} \sim \mathsf{Ber}(p)$, $p = \frac{d}{\sqrt{mn}}$
- Observed matrix:

$$A = \frac{X \circ M}{p}$$
 so that $\mathbb{E}[A] = M$

Assumptions:

$$r, \sqrt{n} \|\phi_i\|_{\infty} = O(\operatorname{polylog}(n))$$

Goal: estimate singular values and left singular vectors of M: ν_i, ϕ_i , with sample size $O(\sqrt{mn})$

Long matrix completion

• Rectangular matrix M of size $n \times m$ ($m \gg n$), with SVD

$$M = \sum_{i=1}^{r} \nu_i \phi_i \psi_i^{\top}, \quad MM^{\top} = \sum_{i=1}^{r} \nu_i^2 \phi_i \phi_i^{\top}$$

- Masking matrix X with $X_{ij} \sim \mathsf{Ber}(p)$, $p = \frac{d}{\sqrt{mn}}$
- Observed matrix:

$$A = \frac{X \circ M}{p}$$
 so that $\mathbb{E}[A] = M$

Assumptions:

$$r, \sqrt{n} \|\phi_i\|_{\infty} = O(\operatorname{polylog}(n))$$

Goal: estimate singular values and left singular vectors of M: ν_i, ϕ_i , with sample size $O(\sqrt{mn})$

Estimating the full SVD of M needs $\Omega(m)$ samples [Koltchinskii et al. '11]

Graph and folded graph

G: bipartite graph on $V_1 \times V_2$, adjacency matrix X

 $ilde{G}$: (multi)-graph on V_1 , adjacency matrix $XX^ op$

First idea: take the (weighted) non-backtracking matrix of $\tilde{\it G} \Rightarrow$ doesn't work

First idea: take the (weighted) non-backtracking matrix of $\tilde{\textit{G}} \Rightarrow \text{doesn't}$ work

Better idea: work directly on $oriented\ wedges$ in G

$$\vec{E}_2 = \{(x,y,z) \in V_1 \times V_2 \times V_1, z \neq x\}$$

First idea: take the (weighted) non-backtracking matrix of $\tilde{\textit{G}} \Rightarrow \text{doesn't}$ work

Better idea: work directly on oriented wedges in G

$$\vec{E}_2 = \{(x, y, z) \in V_1 \times V_2 \times V_1, z \neq x\}$$

First idea: take the (weighted) non-backtracking matrix of $\tilde{\textit{G}} \Rightarrow \text{doesn't}$ work

Better idea: work directly on oriented wedges in G

$$\vec{E}_2 = \{(x, y, z) \in V_1 \times V_2 \times V_1, z \neq x\}$$

 \Rightarrow \vec{E}_2 has size $\sim n^2 m p^2 = d^2 n$: independent from m

Define B indexed by \vec{E} as

$$B_{ef} = \begin{cases} A_{f_1 f_2} A_{f_3 f_2} & \text{if } e_3 = f_1 \text{ and } e_2 \neq f_2 \\ 0 & \text{otherwise} \end{cases}$$

Define B indexed by \vec{E} as

$$B_{ef} = \begin{cases} A_{f_1 f_2} A_{f_3 f_2} & \text{if } e_3 = f_1 \text{ and } e_2 \neq f_2 \\ 0 & \text{otherwise} \end{cases}$$

e, f form a non-backtracking walk of length 4, starting from V_1 , ending in V_1 .

Results

Theorem (S.-Zhu '24)

Assume that $p \propto \frac{d}{\sqrt{mn}}$, with d large enough. Then with high probability, the top eigenvalues (resp. eigenvectors) of B are correlated with the ν_i and ϕ_i , in the sense that we can build estimates λ_i , ξ_i satisfying

$$\lambda_i =
u_i + o(1)$$
 and $\langle \xi_i, \phi_i
angle^2 = 1 - O\left(rac{1}{d}
ight) + o(1)$

When M = unfold(T), we can achieve weak recovery of T, and almost exact recovery $(\|T - \hat{T}\| = o(1))$ when $d \to \infty$!

Results: eigenvalues

Figure: Spectrum of B, d = 3

Results: eigenvectors

Figure: Top eigenvector of B, d = 3

Wedge sampling

Lessons from before

Studying $AA^{\top} \Leftrightarrow \text{studying wedges}$

All non-wedges (vertices in V_2 with degree 1) are useless!

Uniform sampling: $O(n^{k/2})$ degree-one vertices, O(n) wedges...

Lessons from before

Studying $AA^{\top} \Leftrightarrow \text{studying wedges}$

All non-wedges (vertices in V_2 with degree 1) are useless!

Uniform sampling: $O(n^{k/2})$ degree-one vertices, O(n) wedges...

What if we could only sample 'useful' edges?

Wedge sampling

Sample from the wedge set

$$\mathcal{W} = [n] \times [m] \times [n]$$

with probability $p=rac{1}{mn} imes \mathsf{polylog}(n) o \mathsf{sampled}$ set $ilde{\mathcal{W}}$

For each wedge (i, k, j), reveal A_{ik} and A_{jk}

 mn^2 possible wedges, $p\lesssim \frac{1}{mn}$, two entries revealed per wedge $\Rightarrow \tilde{O}(n)$ samples!

Spectral initialization

Initial spectral estimator:

$$\tilde{B} = \sum_{(i,k,j)\in\tilde{\mathcal{W}}} A_{ik} A_{jk}.$$

Theorem (Luo, Ma, S., Zhu '25)

Let $p \gtrsim \frac{1}{mn}$ and $A \in \mathbb{R}^{n \times m}$ a low-rank delocalized matrix. Then with high probability,

$$\|\tilde{B} - AA^{\top}\| \lesssim \sqrt{\frac{\log(n)}{pnm}} \|A\|^2$$

Further, if $A = U\Sigma V^{\top}$ and $\tilde{B} = \tilde{U}\tilde{\Sigma}\tilde{V}^{\top}$, then

$$\min_{O \in \mathcal{O}_r} \lVert \tilde{U}_r O - U \rVert_{2,\infty} \lesssim \sqrt{\frac{\log(n)}{\textit{pnm}}} \lVert U \rVert_{2,\infty}$$

where \tilde{U}_r contains the top r eigenvectors of \tilde{B} .

Ilustration

Figure: Recovery performance for a rank-one tensor

Refinement

Previous works [Haselby et al. '24]: end-to-end algorithm adapted to the sampling scheme.

Our idea: sample splitting

- wedge sampling for initialization
- sparse uniform sampling $(p \propto n^{-(k-1)})$ with existing algorithms [Montanari and Sun '18, Cai et al. '21]

Theorem (Luo, Ma, S., Zhu '25)

Once the initial estimate \tilde{U}_r of U is obtained, the refinement methods of [Montanari and Sun '18, Cai et al '21] only require $\tilde{O}(n)$ uniform samples to recover T

Hardest step is initial alignment [Ben Arous et al '21]

Under the hood

Core property for the refinement step: concentration in spectral norm

$$\|p^{-1}\tilde{T} - T\| \lesssim \frac{1}{n^{k/2}p} \|T\|$$

Problem: this is sharp!

$$\|p^{-1}\tilde{T}\| \gtrsim \|p^{-1}\tilde{T}\|_{\infty} \gtrsim \frac{1}{n^{k/2}p}\|T\|$$

 \Rightarrow no concentration for $p \ll n^{-k/2}$...

Delocalized norm of tensors

Main idea:

$$||T|| = \max_{||u_i|| \le 1} \langle T, u_1 \otimes \cdots \otimes u_k \rangle,$$

but

- $\|p^{-1}\tilde{T}\|$ is attained for $u_i = e_{j_i}$ (basis vectors)
- in the proofs, usually almost all of the u_i are delocalized!

New norm: for $\delta \in \mathbb{R}^k$,

$$||T||_{\delta} = \sup_{j_1, j_2 \in [k]} \sup_{(u_1, \dots, u_k) \in \mathcal{U}_{j_1 j_2}} \langle T, u_1 \otimes \dots \otimes u_k \rangle$$

where

$$\mathcal{U}_{j_1,j_2} = \{(u_1,\ldots,u_k) : \|u_i\| \leq 1 \ \forall i, \|u_j\|_{\infty} \leq \delta_j \ \forall j \neq j_1,j_2\}$$

Delocalized norm concentration

Concentration on much sparser tensors for $\|\cdot\|_{\delta}$:

Theorem (Yuan and Zhang '17, Luo, Ma, S., Zhu '25)

Assume that $\delta_i \lesssim n^{-1/2}$ for all $i \in [k]$. Then for any low-rank delocalized tensor T, with high probability

$$\|\rho^{-1}\tilde{T} - T\|_{\delta} \lesssim \sqrt{\frac{\log(d)}{n^{k-1}\rho}} \|T\|_{\delta} \lesssim \sqrt{\frac{\log(d)}{n^{k-1}\rho}} \|T\|$$

Already used for non-polynomial tensor completion, never for the polynomial case!

Is it viable?

Not only viable... but natural!

Sampling $(i, \underline{k}, j) \Leftrightarrow$ fixing all modalities but one

Core principle of experimental design!

