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Goal and motivation for today

• Understand the high-dimensional dynamics of online SGD on real data

• What is the role of structure/high dimensionality in the dynamics?

• Exact prediction of the dynamics 

• Condition on feature learning, scaling, stability, classification capabilities  

Given data - (𝒂𝑖; 𝒚𝑖) 𝑖=1
𝑛 , 𝑋 ∈ ℝ𝑝 is a set of learnable parameters with SGD

min
𝑋∈ℝ𝑝

 
1

𝑛
෍

𝑖=1

𝑛

𝑓(𝑋; 𝒂𝑖; 𝒚𝑖)min
X∈ℝ𝑝

𝐿 𝑋 = 𝔼(𝒂,𝒚) 𝑓 𝑋; 𝒂, 𝒚
?

𝐿 𝑋



SGD dynamics - One class
Deterministic equivalence and more



Data and estimator setup

Target (Teacher) model:

𝒚𝑖 = 𝜙 𝑋⋆𝒂𝑖; 𝜺𝑖 , 𝜺𝑖  - i.i.d. noise with bounded variance

with a true matrix 𝑋⋆ ∈ ℝℓ⋆×𝑑 and 𝜙: ℝℓ⋆
→ ℝ𝑚,  with ℓ⋆ = 𝑂𝑑(1)

Estimator (Student) model Given (𝒂𝑖 , 𝒚𝑖) 𝑖=1
𝑛 , choose a function 𝑔: ℝℓ → ℝ𝑚, estimate the matrix 

𝑋 ∈ ℝℓ×𝑑 with ℓ = 𝑂𝑑(1)

𝒂𝑖 ∼ 𝒩(0, 𝐾), with 𝐾 ∈ ℝ𝑑×𝑑, 𝐾 op bounded 

(𝒂𝑖 , 𝒚𝑖) 𝑖=1
𝑛

𝜙 𝑋⋆𝒂𝑖; 𝜺𝑖

𝑔 𝑋𝒂𝑖
(𝒂𝑖 , 𝒚𝑖) 𝑖=1

𝑛

Optimization problem:  𝐿 𝑋 = 𝔼 dist(𝑔 𝑋𝒂 ; 𝒚 = 𝔼 𝒂,𝜺 𝑓 𝑋𝒂; 𝑋⋆𝒂, 𝜺

𝒂 ∈ ℝ𝑑

𝑋 ∈ ℝℓ×𝑑

1

𝑔 𝑋𝒂 =  ෍

𝑖=1

ℓ

𝜎 (𝑋𝑖𝒂)

“Neural Network”



Stochastic Gradient Descent (SGD)

• One pass single batch (online learning) with fixed step size

• Initialization 𝑋0 ∈ ℝℓ×𝑑 with a bounded norm

• High-dimensional limit, 𝑛, 𝑑 large,  
𝑛

𝑑
→ 𝑇 ∈ (0, ∞)

𝑋𝑘+1 = 𝑋𝑘 −
𝛾𝑘

𝑑
𝛻X𝑘

𝑓 𝑋𝑘; 𝒂𝑘+1 , 𝒚𝑘+1

parametersSamples 

(iteration)

𝑋1

𝑋2

Learning rate 

(step size)



One class - No structure (𝐾 = 𝐼𝑑)

• Recall the features 𝒂𝑖 ∼ 𝒩(0, 𝐾), 𝐾 = 𝐼𝑑 - corresponds to isotropic data – no structure

• Iterates of SGD: 

𝑋𝑘+1 = 𝑋𝑘 −
𝛾

𝑑
𝛻𝑟𝑓 ⊗ 𝒂𝑘+1, where 𝛻r𝑓 = 𝛻𝒓𝑘

𝑓 𝒓𝑘; 𝒓⋆, 𝜺𝑘+1

    with 𝒓𝑘 = 𝑋𝑘𝒂𝑘+1, 𝒓⋆ = 𝑋⋆𝒂𝑘+1 

• Order Parameters: “𝐍𝐨𝐫𝐦”  𝑋𝑘 , 𝑋𝑘 = 𝑋𝑘
⊤𝑋𝑘, and “𝐎𝐯𝐞𝐫𝐥𝐚𝐩” 𝑋⋆, 𝑋𝑘 = (𝑋⋆)⊤𝑋𝑘

Theorem: (E. Collins-Woodfin, C&E. Paquette, SI): Fix 𝑇 =
𝑛

𝑑
∈  [0, ∞) and for some 𝜀 >  0 with overwhelming 

probability,

sup
0≤𝑡≤𝑇

ℬ 𝑡 − 𝐵 𝑡𝑑 ≤ 𝑑−𝜀

where 𝐵𝑘 =
𝑋𝑘 , 𝑋𝑘 𝑋𝑘 , 𝑋⋆

𝑋⋆, 𝑋𝑘 𝑋⋆, 𝑋⋆ Time scale: 𝑘 iterates of SGD = 𝑡𝑑

continues time: 𝑑 → ∞ instead of 𝛾 → 0



Limiting ODEs  - No structure (𝐾 = 𝐼𝑑)

Given the deterministic B-matrix:

ℬ 𝑡 =
ℬ𝑥𝑥(𝑡) ℬ𝑥⋆(𝑡)

ℬ𝑥⋆(𝑡) 𝑋⋆, 𝑋⋆

The limiting ODEs: 

dℬ 𝑡

d𝑡
= −𝛾 ℬ 𝑡 𝐻 ℬ 𝑡 + 𝐻 ℬ 𝑡

⊤
ℬ 𝑡 + 𝛾2 𝐼 ℬ 𝑡 0

0 0

Fisher matrix:

 𝐼 ℬ 𝑡 = 𝔼 𝛻r𝑓⊗2

Gradient of the loss:

𝐻 =
𝛻ℬ𝑥𝑥

ℒ 0

𝛻ℬ𝑥⋆
ℒ 0

“Noise” term

Recall SGD iterates: 𝑋𝑘+1 = 𝑋𝑘 −
𝛾

𝑑
𝛻r𝑓𝒂𝑘+1 

𝑇

“Gradient” term

Order Parameters: “𝐍𝐨𝐫𝐦” 𝐵𝑥𝑥,𝑘= 𝑋𝑘 , 𝑋𝑘 , and “𝐎𝐯𝐞𝐫𝐥𝐚𝐩” 𝐵𝑥⋆,𝑘 = 𝑋𝑘 , 𝑋⋆



Related literature - SGD in high dimension

Isotropic data (𝐾 = 𝐼𝑑): 

• Two-layer neural net (Saad & Solla Phys. Rev. E ’95, Riegler & Biehl Physica A ’95…) 

• Phase retrieval (Tan & Veryshynin JMLR ’23, Mignacco et al. NeurIPS ‘20) 

• Tensor PCA (Ben Arous et al. NeurIPS ‘22, Liang et al. Inf. Inference ‘23)

• Gaussian mixture models (Ben Arous et al. ICLR ’24, 25’)

• Generalized linear model (Gerbelot et al ‘22, Celentano et al. ‘21) 

• Two-layer neural net (Goldt et al. NeurIPS ‘19)

• ….

Structured data (general 𝐾): 

• Linear regression – Balasubramanian et al. ‘23, Wang et al. J. Stat. Mech. ‘19, Paquette et al. ’22-25’

• Two-layer neural net – Yoshida et al. NeuriPS ‘19, Goldt et. al. PRX ‘20

Can that be made rigorous for general loss function? 



Structural data (general 𝐾)– Resolvent trick  

Issue: One cannot write an autonomous set of equations, 

dℬ 𝑡

d𝑡
= ℱ(ℬ 𝑡 )

Solution: Random matrix theory trick! 

Resolvent: 𝑅 𝑧; 𝐾 = 𝐾 − 𝑧𝐼𝑑
−1 for 𝑧 ∈ ℂ

Some nice resolvent identities: 

•  𝐾𝑅 𝑧; 𝐾 = 𝐼𝑑 +  𝑧𝑅(𝑧; 𝐾)

• 𝑅 𝑧; 𝐾 = −
1

𝑧
𝐼𝑑 −

𝐾

𝑧

−1
= σ𝑗=1

∞ (𝐾/𝑧)𝑗

This allows us to represent any polynomial of 𝐾!

𝑝 𝐾 = −
1

2𝜋𝑖
ර

Γ

𝑝 𝑧 𝑅 𝑧; 𝐾 d𝑧

For any contour Γ ⊂ ℂ enclosing the eigenvalues of 𝐾. 

Higher powers of 𝐾 appears! 

Terms of the form 

𝑋𝑇𝐾𝑋, 𝑋𝑇𝐾2𝑋, …



Structural data (general 𝐾)

• Define the S matrix of “Order Parameters” :  𝑆𝑘(𝑧) =
𝑋𝑘 , 𝑋𝑘 𝑅 𝑋𝑘 , 𝑋⋆

𝑅

𝑋⋆, 𝑋𝑘 𝑅 𝑋⋆, 𝑋⋆
𝑅

=
𝑋𝑘

𝑋⋆ 𝑅 𝑧; 𝐾 𝑋𝑘
⊤ (𝑋⋆)⊤

Theorem (E. Collins-Woodfin, C&E. Paquette, SI): For any 𝑇 =
𝑛

𝑑
∈  [0, ∞) and for some 𝜀 >  0 with 

overwhelming probability

sup
0≤𝑡≤𝑇

𝒮 𝑡, 𝑧 − 𝑆 𝑡𝑑 (𝑧) ≤ 𝑑−𝜀 .

This then allows us to derive a limiting ODEs: 

d𝒮 𝑡, 𝑧

d𝑡
= ℱ(𝑧, 𝒮 𝑡, 𝑧 )

Order Parameters:

“Resolvent 𝐍𝐨𝐫𝐦” 𝑋𝑘 , 𝑋𝑘 𝑅= 𝑋𝑘𝑅 𝑧; 𝐾 𝑋𝑘
⊤ 

“Resolvent 𝐎𝐯𝐞𝐫𝐥𝐚𝐩” 𝑋𝑘 , 𝑋⋆
𝑅 = 𝑋𝑘𝑅 𝑧; 𝐾  (𝑋⋆)⊤



Explicit risk curves

A large class of functions (statistics):

𝜑 𝑋 = ℎ 𝑋, 𝑋⋆ ⊗2, 𝑝 𝐾 → ℎ(−
1

2𝜋𝑖
ර

Γ

𝑝 𝑧 𝒮 𝑡, 𝑧 d𝑧)

ℎ is 𝛼 pseudo-Lipchitz function, and 𝑝 is a polynomial

• Other functions: 𝑋 2, 𝑋 − 𝑋⋆ 2 … 
𝑋𝑘𝒂 ∼ 𝒩(0, 𝑋𝑘

⊗2, 𝐾 ), 

𝑋⋆𝒂 ∼ 𝒩 0, (𝑋⋆)⊗2 , 𝐾 ,

 𝔼 ⟨𝑋⋆𝒂, 𝑋𝑘𝒂⟩ = 𝑋⋆ ⊗ 𝑋𝑘, 𝐾

𝜑 𝑋𝑘 = ℒ 𝑋𝑘 = 𝔼 𝒂,𝜺 𝑓 𝑋𝒂, 𝑋⋆𝒂; 𝜺

ℒ 𝑋𝑘 = ℎ( 𝑋, 𝑋⋆ ⊗2, 𝐾 ) → ℒ 𝑡

By our theorem

𝑋𝑘
⊗2, 𝐾 𝑋𝑘 ⊗ 𝑋⋆, 𝐾

𝑋⋆ ⊗ 𝑋𝑘 , 𝐾 (𝑋⋆)⊗2 , 𝐾
= 𝑋, 𝑋⋆ ⊗2, 𝐾



Main result: Limiting process - Homogenized 
SGD 

Homogenized SGD: The process 𝒳𝑡 satisfies the following SDE: 

d𝒳𝑡  = −𝛾𝛻ℒ 𝒳𝑡 d𝑡 +
𝛾

𝑑
𝔼[ 𝛻r𝑓)⊗2 ⊗ 𝐾d𝒲𝑡

where 𝒲𝑡 denotes 𝑑-dimensional Brownian motion

Theorem (E. Collins-Woodfin, C&E. Paquette, SI): 

Fix 𝑇 =
𝑛

𝑑
∈  [0, ∞), the process 𝒳𝑡 for 𝑡 ∈ 0, 𝑇  and some  𝜀 > 0 with overwhelming probability

sup
0≤𝑡≤𝑇

𝜑 𝑋 𝑡𝑑 − 𝜑(𝒳𝑡) ≤ 𝑑−𝜀

“Fisher matrix”

Distance to optimality

“Noise” term

Note 𝑋 𝑡𝑑 ⇏ 𝒳𝑡

Time scale: 

𝑘 iterates of SGD = 𝑡𝑑, 

Recall SGD iterates:  𝑋𝑘+1 = 𝑋𝑘 −
𝛾

𝑑
𝛻𝑟𝑓 ⊗ 𝒂𝑘+1 

⊤ , with the population loss  ℒ 𝒳 = 𝔼 𝑓  



Example 1: Phase retrieval – Hard phase 

• Task: Recover 𝑋⋆ ∈ ℝ1×𝑑 , from modulo of projections on the vectors 𝒂: 

ℒ(𝑋)  = 𝔼𝒂 |𝑋𝒂| − |𝑋⋆𝒂| 2

   Student: 𝑔 𝑋𝒂 = |𝑋𝒂|, and teacher: 𝜙 𝑋⋆𝒂 = |𝑋⋆𝒂|

• Random initialization is problematic, suppose 𝑋0 ∼ 𝒩(0, 𝐼𝑑) 

Initial overlap = 𝑋0, 𝑋⋆ ∼
1

𝑑
  

• If Initial overlap ∼
1

𝑑
  SGD converges in 𝑛 = 𝑂(𝑑 log𝑑)

• If Initial overlap ∼ 𝑂 1  SGD converges in 𝑛 = 𝑂(𝑑)

• This can be seen directly from our equation of the norm and overlap

Candes et al., ’11



Example: Phase retrieval – risk and alignment

𝒳
𝑇

𝐾
𝑋

⋆

ℒ
(𝒳

)



What learning rate ensures descent?

• Distance to optimality, by our theorem  𝑋 𝑡𝑑 − 𝑋⋆ 2
→ 𝒟 𝑡 2: 

d𝒟 𝑡 2

dt
= −2𝛾𝐴 𝑡 +

𝛾2

𝑑
Tr 𝐾 𝐼(𝑡)

    Thus, 𝒟 𝑡 2 is decreasing when: 𝛾 ≤ 𝛾𝑡
stable =

2
1

𝑑
Tr 𝐾

𝐴 𝑡

𝐼(𝑡) 

• If for some 𝑚 > 0, 𝑚𝐼 𝑡 ≤ 𝐴(𝑡) (convexity and smoothness assumption): 

𝛾 ≤
2𝑚

1
𝑑

Tr 𝐾

• E..g. if 𝛻𝑓 is Lipschitz with constant 𝐿 then 𝑚 = 1/2𝐿

• Convergence rate will now depend on 
𝜆\min 𝐾

1

𝑑
Tr 𝐾

Average 

eigenvalue rather 

than largest!

where 𝐴 𝑡 , 𝐼(𝑡) are functions of 

the limiting norm and overlap

Dynamical threshold 

Motivate ideas such as line 

search, and Polyak step size



Descent and critical learning rate

2 4 6 8 10 12 14
learning rate

10−3

 

10−1

101

Marchenko-Pastur, max eig. = 2.23
q = 2.0, max eig. = 2.58

q = 2.5, max eig. = 3.05

q = 3.0, max eig. = 3.52

q = 3.5, max eig. = 4.01

q = 4.0, max eig. = 4.50

q = 8.0, max eig. = 8.47

10−5

 

10−7
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𝑋

𝑇
−

𝑋
⋆

2

Intialization, 𝑋0 − 𝑋⋆ 2 

Average eigenvalue is fixed, 
1

d
Tr 𝐾 = 1

𝒟 𝑡 2 in binary noiseless logistic regression for various 𝛾 and K

𝐾 = diag 𝜎𝑖
2𝑞

: 1, . . , 𝑑 , 𝑤𝑖𝑡ℎ 𝜎𝑖 ∼ Unif(1,2) 

Threshold learning rate depends 

only on
1

d
Tr 𝐾

Optimal learning rate and the 

rate of convergence do vary as 

the max/min eigenvalue changes 



Example 2: Stochastic adaptive methods  - 
AdaGrad Norm

• Algorithm setup 𝑋, 𝑋⋆ ∈ ℝ𝑑 , with 𝛾0 =
𝛾

𝑏0
> 0: 

• Deterministic equivalence 𝛾 𝑡𝑑 → 𝛾𝑡:

    with 𝐼 𝑠 = 𝔼 𝑓′(𝑋𝑇𝑎)2

• For Least square:  𝐼 𝑠 = 2ℒ(𝑠).

R. Ward, X.Wu, and L.Bottou, JMLR 21(1):9047–9076, 2020 

𝑋𝑘+1 = 𝑋𝑘 −
𝛾𝑘

𝑑
𝛻X𝑘

𝑓 𝑋𝑘; 𝒂𝒌+𝟏, 𝒚𝒌+𝟏

𝛾𝑘 =
𝛾

𝑏0
2 + σ𝑗=1

𝑘 𝛻X𝑘
𝑓

2

𝛾𝑡 =
𝛾

𝑏0
2 +

Tr 𝐾
𝑑 0׬

𝑡
𝐼 𝑠 d𝑠



Stochastic adaptive methods – Exact 
Adagrad dynamics

𝛾𝑡

ℒ(𝑡)

Collins-Woodfin, E., SI., Malaxechebarría, B.G., Mackenzie, A.W., Paquette, E. & Paquette, C., arXiv preprint arXiv:2405.19585. NeurIPS 2024



How can we extend this to 
the multiclass setting?

Gaussian Mixture Model (GMM)

Joint work (in progress) with Elizabeth Colins-Woodfin



Model-setup  - Data distribution 

Target (teacher) model:  Data from ℓ⋆ classes: 

𝒂𝑖,𝐼 ∼ 𝒩(𝜇𝐼 , 𝐾𝐼), with 𝐾𝐼 ∈ ℝ𝑑×𝑑, 𝐾𝐼 op bounded, all 𝐾𝐼  commute 

(𝒂𝑖,𝐼 , 𝒚𝑖,𝐼)
𝑖=1

𝑛

𝑐 ∈ [ℓ⋆] = 𝑂 log 𝑑 , and 𝑝𝑐 = ℙ(𝑐 = 𝐼)
Generate

𝒚𝑖 = 𝜙 𝑋⋆𝒂𝑖; 𝜺𝑖 , 𝜺𝑖  - i.i.d. noise with bounded variance

with a true weight matrix 𝑋⋆ ∈ ℝℓ⋆×𝑑 and 𝜙: ℝℓ⋆
→ ℝ𝑚

“Hard label”  - 𝒚𝒊,𝑰 = 𝑰 or one - hot encoding of 𝑰

“Soft label” : 𝑦𝑖,𝐼 = 𝜙𝐼 𝑋⋆𝒂𝑖,𝐼; 𝜺𝑖   e.g. 𝑦𝑖 = 𝜙𝐼 𝑋⋆𝒂𝑖,𝐼, 𝜺 = softmax(𝑋⋆𝒂𝑖) softmax r i =
e𝑟𝑖

σ𝑗 𝑒𝑟𝑗

Our setup allow for the following two settings: 



Classifier and optimization problem GMM

Related work: Seddik et al ICLR 2020, Loureiro et al NIPS 2021, Mai &Liao 2019, Ben-Arous et al 2025

Classifier (student) model: 

Choose a function 𝑔: ℝℓ → ℝ𝑚, estimate using online SGD the matrix 𝑋 ∈ ℝℓ×𝑑  

 ℓ = 𝑂 log 𝑑

Optimization problem: 

min
𝑋∈ℝ𝑑×ℓ

 𝐿 𝑋 = 𝔼 𝒂,𝐼 𝑓𝐼 𝑋𝒂𝐼; 𝒚𝐼  

𝑔𝐼 𝑋𝒂𝑖,𝐼(𝒂𝑖,𝐼 , 𝒚𝑖,𝐼)
𝑖=1

𝑛



Main result  - deterministic equivalence

Theorem (Collins-Woodfin, SI ‘25) Fix 𝑇 =
𝑛

𝑑
 >  0. For any 𝜖 ∈  (0,

1

2
 ), with overwhelming probability,

sup
0≤ 𝑡≤𝑇

|𝐿(𝑋 𝑡𝑑 )  − ℒ 𝑡 | <  𝐶𝑑−𝜖

where ℒ(𝑡) is the “deterministic equivalent” of the risk, expressible in terms of a system of autonomous 

ODEs.

• This holds for other statistics of X, not just risk.

How does the structure of the classes affect 

the SGD dynamics?



SGD vs theory for different data models



Binary logistic regression

Two classes: 𝑦𝑖 = 1𝑖=1 and 𝑎 ∣ 𝑖 = 1 ∼ 𝑁(𝜇1, 𝐾1), and 𝑎 ∣ 𝑖 = 2 ∼ 𝑁(𝜇2, 𝐾2),  with 𝑝1 =
1

2
 :

𝐿 𝑋 = 𝔼(𝑎,𝑦) −𝑎⊤𝑋𝑦 + log 𝑒𝑎⊤𝑋 + 1  

For simplicity:  𝜇1 = −𝜇2= 𝜇 𝐾1 = diag 𝜆1
1

, … , 𝜆𝑑
1

 𝐾2 = diag(𝜆1
2

, … , 𝜆𝑑
(2)

)

Identity model: 𝐾1= 𝐾2 = 𝐼𝑑

Zero-One model  -  All eigenvalues in {0, 1}

• Partition indices  {1,・ ・ ・ , 𝑑}  =  𝐼00  ⊔  𝐼01  ⊔  𝐼10  ⊔  𝐼11

• where 𝐼𝑗𝑘  ∶=  { 𝑖 ≤  𝑑 𝜆𝑖
(1)

 =  𝑗, 𝜆𝑖
(2)

 =  𝑘} 

A simple structure that illustrates 

anisotropy between classes! 

𝐾1 =

0
0

1
1

𝐾2 =

0
1

0
1

Example 𝑑 =  4:

( 𝐼11 = 𝑑) 



SGD iterations/d

Learning curve  - identity 

SGD iterations/d

Learning curve  - Zero-one 

Comparing Identity and Zero-One models - 
Risk

flattens out at around 0.4 Continue decreasing

Does SGD find the “perfect” subspace? 

How “clean” directions (𝐼00) affect the classification? 



SGD iterations/d

Alignment with 𝜇 - Identity

Comparing Identity and Zero-One models – 
Alignment

Alignment ≔
𝜇⊤𝑋 𝑡𝑑

𝑋 𝑡𝑑

→
𝓂 𝑡

𝒱 𝑡

Approximatly learns 𝜇

Initially learns 𝜇 but 

then moves away

SGD iterations/d

Alignment with 𝜇 – Zero-One



Zero-One asymptotic 

Proposition (Collins-Woodfin, SI ‘25) : For 𝛾 <  1, 𝑝1 =
1

2
, |𝐼00| = 𝐼01 = 𝐼10 = 𝐼11 = 𝑑/4. There 

exist 𝐶1 𝛾 , 𝐶2(𝛾) such that 

𝑡−𝐶1 𝛾 ≤ ℒ 𝑡 ≤ 𝑡−𝐶2 𝛾

where the alignment with 𝜇:

𝓂 𝑡  ≍ log 𝑡 ,  
𝓂 𝑡

𝒱 𝑡
=

1

2
( 1 +  𝑂( log 𝑡 −1/2)

Remarks: 

• This implies analogous bounds on the original loss in high dimension by our Theorem

• 𝒱 𝑡 ≈ 𝑋 𝑘𝑑
2
 and the 𝓂 𝑡 ≈ 𝜇⊤𝑋 𝑘𝑑  grows logarithmically with 𝑛! (very different than the 

identity setting!)

• The covariance matrices has no power law structure. 



Perfect classification vs clean directions 

• What direction do we learn?

• Largest distance between class means (𝜇)

• Smallest variance in data (eigenspace of 𝐼00)

• Project into each eigenspace 𝐼𝑗𝑘, denote by 𝓂𝑗𝑘 𝑡 , 𝒱𝑖𝑘(𝑡) 

• Elizabeth Collins-

𝑋 remain bounded 

in other directions

𝑋 continues growing in 

the 𝐼00 of 𝜇  direction

Initially 𝑋 aligns in 
the 𝜇 direction

In particular, we can prove that: 

𝓂00 𝑡 ≍ log 𝑡 , 

𝓂01 𝑡 , 𝓂10, 𝑡 , 𝓂11(𝑡)  =  𝑂( log 𝑡),

𝑑 =  1000 and 𝛾 =  0.9



All in one  - Power law covariance and mean

Power law model:  𝐾1 = 𝐾2 = diag 𝜆1, … , 𝜆𝑑 , 𝜇1 = −𝜇2= 𝜇

• There is a phase transition at 𝛼 = 1 + 𝛽

𝜆𝑖 =
𝑖

𝑑

𝛼
   and 𝜇𝑖

2 =
1

𝑑

𝑖

𝑑

𝛽
, for 𝛽 ≥ 0, 𝛼 > 1 

SGD iterations/d SGD iterations/d

1 + 𝛽 = 2.2 > 𝛼 = 1.2 1 + 𝛽 = 1 < 𝛼 = 1.2

Risk stabilizes

as in the identity case

Risk continues 

to go down

Mild power law Extreme power law

Spectrum with 

eigenvalues 

accumulating near 

zero



Mild power law and identity regime

Proposition: Suppose 𝑋0 = 0, 𝛾 < 1, 𝑝1 =
1

2
. Then for 𝑡 ≥ 1,

Mild power law (𝛼 < 𝛽 + 1) 

• 𝓂 𝑡 ≍ 𝜇⊤ 𝐾 −1𝜇

• ℒ 𝑡 ≍ ℒmin>0

Identity covariance: 𝐾 = 𝐼𝑑 with 𝜇 = 𝑂(1) 

• 𝓂 𝑡 ≍ 𝜇⊤ 𝐾 −1𝜇

• ℒ 𝑡 ≍ ℒmin>0

SGD iterations/d

Mild power law, 𝛼 < 𝛽 + 1

Rate of convergence are different!  

SGD iterations/d

identity 



Extreme power law (𝛼 ≥ 𝛽 + 1) 

Proposition: Suppose 𝑋0 = 0, 𝛾 < 1, 𝑝1 =
1

2
. Then for 𝑡 ≥ 1,

• 𝓂 𝑡  grows with 𝑡 at a polylog rate

• ℒ 𝑡 → 0 faster than polynomial decay,

   but still slower than exponential decay. 

Remarks: 

• Closely related to the Zero-One thought rates are different!

• Small variance directions contribute the most to the learning. 

SGD iterations/d

Extreme power law, 𝛼 > 𝛽 + 1



SGD vs theory for different data models



Large number of classes

• We allow the number of classes to grow as ℓ = ℓ⋆ = 𝑂(log(𝑑))

ℓ = ℓ⋆ = 15, 𝑑 = 500



Conclusions

• An exact asymptotic theory of online SGD for multi-index models 

• Applies to stochastic adaptive methods, such as Adagrad

• Extension of the theory for nonisotropic Gaussian mixture models

• Algorithm-dependent scaling laws and phase transition as a function of the structure

• Asymptotic analysis show the exact scaling behavior of the loss and other statistics 

• Allow for growing number of classes ℓ⋆ = 𝑂(log 𝑑)

SGD iterations/d SGD iterations/d

Mild power law Extreme power 

law



Thank You!
Questions?

SI, G. Naveh, Z. Ringel. "Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs." arXiv 

preprint arXiv:2112.15383 (2021) 

• Collins-Woodfin, E & Seroussi, I ”SGD dynamics for Gaussian Mixtures models with non-isotropic Covariance and mean” (To appear soon!)

• Collins-Woodfin, E., Paquette, C., Paquette, E., & Seroussi, I. (2024). Hitting the high-dimensional notes: An ode for SGD learning dynamics on GLMs and multi-

index models. Information and Inference: A Journal of the IMA, 13(4), iaae028.

• Collins-Woodfin, E., Seroussi, I., Malaxechebarría, B.G., Mackenzie, A.W., Paquette, E. and Paquette, C., 2024. The High Line: Exact Risk and Learning Rate Curves 

of Stochastic Adaptive Learning Rate Algorithms. arXiv preprint arXiv:2405.19585. NeurIPS 2024
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