The MMSE of the Planted Subgraph Problem

Ilias Zadik

Department of Statistics and Data Science Yale University

Joint w/ Daniel Lee (MIT), Francisco Pernise (MIT), Amit Rajaman (MIT)

Cargese 2025

August 5, 2025

For some $\theta^* \sim \mathcal{P}$ on $\Theta \subseteq \mathcal{S}^{\mathsf{n}-1}$, we observe $\mathcal{D} \sim \mathbb{P}_{\theta^*}$.

For some $\theta^* \sim \mathcal{P}$ on $\Theta \subseteq \mathcal{S}^{\mathsf{n}-1}$, we observe $\mathcal{D} \sim \mathbb{P}_{\theta^*}$.

Goal: calculate (for large n)

$$\mathsf{MMSE}_n := \min_{A} \mathbb{E}[\|\theta^* - A(D)\|_2^2] = \mathbb{E}[\|\theta^* - \mathbb{E}[\theta^*|\mathcal{D}]\|_2^2].$$

For some $\theta^* \sim \mathcal{P}$ on $\Theta \subseteq \mathcal{S}^{\mathsf{n}-1}$, we observe $\mathcal{D} \sim \mathbb{P}_{\theta^*}$.

Goal: calculate (for large n)

$$\mathsf{MMSE}_n := \min_{A} \mathbb{E}[\|\theta^* - A(D)\|_2^2] = \mathbb{E}[\|\theta^* - \mathbb{E}[\theta^*|\mathcal{D}]\|_2^2].$$

Very fundamental object in statistics and information-theory.

For some $\theta^* \sim \mathcal{P}$ on $\Theta \subseteq \mathcal{S}^{\mathsf{n}-1}$, we observe $\mathcal{D} \sim \mathbb{P}_{\theta^*}$.

Goal: calculate (for large n)

$$\mathsf{MMSE}_n := \min_{A} \mathbb{E}[\|\theta^* - \mathsf{A}(\mathsf{D})\|_2^2] = \mathbb{E}[\|\theta^* - \mathbb{E}[\theta^*|\mathcal{D}]\|_2^2].$$

- Very fundamental object in statistics and information-theory.
- Big successes over the last decades:
 exact computation of limiting MMSE for some high-d models!
 E.g., Proportional regimes for,
 Compressed sensing (T'02), (GV'05), (MT'06), (RP'19), (BDMK'16)
 Spiked Matrix (LKZ'15), (DKMLZ'16), (LM'17).

For some $\theta^* \sim \mathcal{P}$ on $\Theta \subseteq \mathcal{S}^{\mathsf{n}-1}$, we observe $\mathcal{D} \sim \mathbb{P}_{\theta^*}$.

Goal: calculate (for large n)

$$\mathsf{MMSE}_n := \min_{A} \mathbb{E}[\|\theta^* - A(D)\|_2^2] = \mathbb{E}[\|\theta^* - \mathbb{E}[\theta^*|\mathcal{D}]\|_2^2].$$

- Very fundamental object in statistics and information-theory.
- Big successes over the last decades:
 exact computation of limiting MMSE for some high-d models!
 E.g., Proportional regimes for,
 Compressed sensing (T'02), (GV'05), (MT'06), (RP'19), (BDMK'16)
 Spiked Matrix (LKZ'15), (DKMLZ'16), (LM'17).
- So far the successes via statistical physics methods. (e.g., conjectures with replica trick, proofs via Guerra interpolation)

For some $\theta^* \sim \mathcal{P}$ on $\Theta \subseteq \mathcal{S}^{\mathsf{n}-1}$, we observe $\mathcal{D} \sim \mathbb{P}_{\theta^*}$.

Goal: calculate (for large n)

$$\mathsf{MMSE}_n := \min_{A} \mathbb{E}[\|\theta^* - A(D)\|_2^2] = \mathbb{E}[\|\theta^* - \mathbb{E}[\theta^*|\mathcal{D}]\|_2^2].$$

- Very fundamental object in statistics and information-theory.
- Big successes over the last decades:
 exact computation of limiting MMSE for some high-d models!
 E.g., Proportional regimes for,
 Compressed sensing (T'02), (GV'05), (MT'06), (RP'19), (BDMK'16)
 Spiked Matrix (LKZ'15), (DKMLZ'16), (LM'17).
- So far the successes via statistical physics methods. (e.g., conjectures with replica trick, proofs via Guerra interpolation)

This talk

MMSE for Planted Subgraph model: a combinatorial and sublinear prior.

Let n vertices, \mathcal{PC} a u.a.r. k-clique and $G = \mathcal{PC} \cup G_0$, $G_0 \sim \mathcal{G}(n, p)$.

Let n vertices, \mathcal{PC} a u.a.r. k-clique and $G=\mathcal{PC}\cup G_0, G_0\sim \mathcal{G}(n,p)$. Then, if say $k=2\log_2 n$,

Let n vertices, \mathcal{PC} a u.a.r. k-clique and $G = \mathcal{PC} \cup G_0$, $G_0 \sim \mathcal{G}(n,p)$. Then, if say $k = 2\log_2 n$,

$$\underset{n}{\text{lim}}\,\mathsf{MMSE}_n(\mathsf{p}) := \frac{2}{\mathsf{k}(\mathsf{k}-1)}\mathbb{E}[\|\mathbf{1}(\mathcal{PC}) - \mathbb{E}[(\mathbf{1}(\mathcal{PC})|\mathsf{G}]\|_2^2]$$

Let n vertices, \mathcal{PC} a u.a.r. k-clique and $G = \mathcal{PC} \cup G_0$, $G_0 \sim \mathcal{G}(n,p)$. Then, if say $k = 2\log_2 n$,

$$\lim_n \mathsf{MMSE}_n(p) := \frac{2}{k(k-1)} \mathbb{E}[\|\mathbf{1}(\mathcal{PC}) - \mathbb{E}[(\mathbf{1}(\mathcal{PC})|\mathsf{G}]\|_2^2] = \left\{ \begin{array}{ll} 1, & p > 1/2 \\ 0, & p < 1/2 \end{array} \right.$$

Let n vertices, \mathcal{PC} a u.a.r. k-clique and $G = \mathcal{PC} \cup G_0, G_0 \sim \mathcal{G}(n,p)$. Then, if say $k = 2\log_2 n$,

$$\underset{n}{\text{lim}}\,\mathsf{MMSE}_n(p) := \frac{2}{k(k-1)}\mathbb{E}[\|\mathbf{1}(\mathcal{PC}) - \mathbb{E}[(\mathbf{1}(\mathcal{PC})|\mathsf{G}]\|_2^2] = \left\{\begin{array}{ll} 1, & p > 1/2 \\ 0, & p < 1/2 \end{array}\right.$$

• Fun exercise for a class! (direct posterior analysis) [MNWSSZ'22]

Let n vertices, \mathcal{PC} a u.a.r. k-clique and $G=\mathcal{PC}\cup G_0, G_0\sim \mathcal{G}(n,p)$. Then, if say $k=2\log_2 n$,

$$\underset{n}{\text{lim}}\,\mathsf{MMSE}_n(p) := \frac{2}{k(k-1)}\mathbb{E}[\|\mathbf{1}(\mathcal{PC}) - \mathbb{E}[(\mathbf{1}(\mathcal{PC})|G]\|_2^2] = \left\{ \begin{array}{ll} 1, & p > 1/2 \\ 0, & p < 1/2 \end{array} \right.$$

- Fun exercise for a class! (direct posterior analysis) [MNWSSZ'22]
- All-or-Nothing phenomenon.
 First example: sublinear-sparse Gaussian regression [GZ'17], [RXZ'19]

Let n vertices, \mathcal{PC} a u.a.r. k-clique and $G = \mathcal{PC} \cup G_0$, $G_0 \sim \mathcal{G}(n,p)$. Then, if say $k = 2\log_2 n$,

$$\underset{n}{\text{lim}}\,\mathsf{MMSE}_n(p) := \frac{2}{k(k-1)}\mathbb{E}[\|\mathbf{1}(\mathcal{PC}) - \mathbb{E}[(\mathbf{1}(\mathcal{PC})|G]\|_2^2] = \left\{ \begin{array}{ll} 1, & p > 1/2 \\ 0, & p < 1/2 \end{array} \right.$$

- Fun exercise for a class! (direct posterior analysis) [MNWSSZ'22]
- All-or-Nothing phenomenon.

 First example: sublinear-sparse Gaussian regression [GZ'17], [RXZ'19]

Question

Are all subliner-sparsity examples exhibiting the AoN phenomenon?

Let n vertices, $\mathcal{H}=C_1\cup C_2$ u.a.r. disjoint union of k₁-clique and a k₂-clique, and $G=\mathcal{H}\cup G_0$, $G_0\sim \mathcal{G}(n,p)$.

Let n vertices, $\mathcal{H}=C_1\cup C_2$ u.a.r. disjoint union of k_1 -clique and a k_2 -clique, and $G=\mathcal{H}\cup G_0$, $G_0\sim \mathcal{G}(n,p)$. Then, if say $k_1=2\log_2 n$, $k_2=\log_2 n$,

Let n vertices, $\mathcal{H}=C_1\cup C_2$ u.a.r. disjoint union of k_1 -clique and a k_2 -clique, and $G=\mathcal{H}\cup G_0$, $G_0\sim \mathcal{G}(n,p)$. Then, if say $k_1=2\log_2 n$, $k_2=\log_2 n$,

$$\underset{n}{\text{lim}}\,\mathsf{MMSE}_n(\mathsf{p}) := \frac{1}{|\mathcal{H}|}\mathbb{E}[\|\textbf{1}(\mathcal{H}) - \mathbb{E}[(\textbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2]$$

Let n vertices, $\mathcal{H}=C_1\cup C_2$ u.a.r. disjoint union of k_1 -clique and a k_2 -clique, and $G=\mathcal{H}\cup G_0$, $G_0\sim \mathcal{G}(n,p)$. Then, if say $k_1=2\log_2 n$, $k_2=\log_2 n$,

$$\lim_{n} \mathsf{MMSE}_{n}(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_{2}^{2}] = \left\{ \begin{array}{ll} 1, & \mathsf{p} > 1/2 \\ 1/5, & 1/4 < \mathsf{p} < 1/2 \\ 0, & \mathsf{p} < 1/4 \end{array} \right.$$

Let n vertices, $\mathcal{H}=C_1\cup C_2$ u.a.r. disjoint union of k_1 -clique and a k_2 -clique, and $G=\mathcal{H}\cup G_0$, $G_0\sim \mathcal{G}(n,p)$. Then, if say $k_1=2\log_2 n$, $k_2=\log_2 n$,

$$\lim_{n} \mathsf{MMSE}_{n}(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_{2}^{2}] = \left\{ \begin{array}{ll} 1, & \mathsf{p} > 1/2 \\ 1/5, & 1/4 < \mathsf{p} < 1/2 \\ 0, & \mathsf{p} < 1/4 \end{array} \right.$$

 Not as fun exercise for a class! (still possible via direct posterior analysis)

Let n vertices, $\mathcal{H}=C_1\cup C_2$ u.a.r. disjoint union of k_1 -clique and a k_2 -clique, and $G=\mathcal{H}\cup G_0$, $G_0\sim \mathcal{G}(n,p)$. Then, if say $k_1=2\log_2 n$, $k_2=\log_2 n$,

$$\lim_{n} \mathsf{MMSE}_{n}(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_{2}^{2}] = \left\{ \begin{array}{ll} 1, & \mathsf{p} > 1/2 \\ 1/5, & 1/4 < \mathsf{p} < 1/2 \\ 0, & \mathsf{p} < 1/4 \end{array} \right.$$

 Not as fun exercise for a class! (still possible via direct posterior analysis)

Question

A general theory for the MMSE curves of planting an arbitrary subgraph?

Let n vertices, $H=H_n$ be an arbitrary subgraph of K_n , $\mathcal H$ a u.a.r. copy of H in K_n , and $G=\mathcal H\cup G_0$, $G_0\sim \mathcal G(n,p)$.

Let n vertices, $H=H_n$ be an arbitrary subgraph of K_n , $\mathcal H$ a u.a.r. copy of H in K_n , and $G=\mathcal H\cup G_0$, $G_0\sim \mathcal G(n,p)$. Then the object of interest:

Let n vertices, $H=H_n$ be an arbitrary subgraph of K_n , $\mathcal H$ a u.a.r. copy of H in K_n , and $G=\mathcal H\cup G_0$, $G_0\sim \mathcal G(n,p)$.

Then the object of interest:

$$\mathsf{MMSE}_\mathsf{n}(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2], \mathsf{p} \in [0,1].$$

Let n vertices, $H=H_n$ be an arbitrary subgraph of K_n , $\mathcal H$ a u.a.r. copy of H in K_n , and $G=\mathcal H\cup G_0$, $G_0\sim \mathcal G(n,p)$.

Then the object of interest:

$$\mathsf{MMSE}_\mathsf{n}(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2], \mathsf{p} \in [0,1].$$

Let n vertices, $H=H_n$ be an arbitrary subgraph of K_n , $\mathcal H$ a u.a.r. copy of H in K_n , and $G=\mathcal H\cup G_0$, $G_0\sim \mathcal G(n,p)$.

Then the object of interest:

$$\mathsf{MMSE}_\mathsf{n}(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2], \mathsf{p} \in [0,1].$$

 Generalizes: planted clique, planted biclique, planted matching, planted trees...

Let n vertices, $H=H_n$ be an arbitrary subgraph of K_n , $\mathcal H$ a u.a.r. copy of H in K_n , and $G=\mathcal H\cup G_0$, $G_0\sim \mathcal G(n,p)$. Then the object of interest:

$$\mathsf{MMSE}_n(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2], \mathsf{p} \in [\mathsf{0}, \mathsf{1}].$$

- Generalizes: planted clique, planted biclique, planted matching, planted trees...
- Not meaningful to talk about limits (H may change weirdly w/ n).
 Better: focus on MMSE for large but finite n.

Let n vertices, $H=H_n$ be an arbitrary subgraph of K_n , $\mathcal H$ a u.a.r. copy of H in K_n , and $G=\mathcal H\cup G_0$, $G_0\sim \mathcal G(n,p)$. Then the object of interest:

$$\mathsf{MMSE}_{\mathsf{n}}(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2], \mathsf{p} \in [0,1].$$

- Generalizes: planted clique, planted biclique, planted matching, planted trees...
- Not meaningful to talk about limits (H may change weirdly w/ n).
 Better: focus on MMSE for large but finite n.
- MMSE_n(p) is a polynomial-in-p of degree n...

For any planted subgraph problem $w/H = H_n$ weakly dense $(|H| \gg v(H) \log v(H))$ we characterize for large n the MMSE curve.

• The MMSE curve for large n is approx a piecewise constant function with discontinuities given, up to 1 + o(1) error, by variants of the so-called *subgraph Kahn-Kalai threshold* of the graph H.

For any planted subgraph problem $w/H = H_n$ weakly dense $(|H| \gg v(H) \log v(H))$ we characterize for large n the MMSE curve.

• The MMSE curve for large n is approx a piecewise constant function with discontinuities given, up to 1+o(1) error, by variants of the so-called *subgraph Kahn-Kalai threshold* of the graph H. **New stats meaning** to the subgraph Kahn-Kalai thresholds!

- The MMSE curve for large n is approx a piecewise constant function with discontinuities given, up to 1+o(1) error, by variants of the so-called subgraph Kahn-Kalai threshold of the graph H. New stats meaning to the subgraph Kahn-Kalai thresholds!
- We characterize for each p which subgraphs of H are recoverable (onion decomposition).

- The MMSE curve for large n is approx a piecewise constant function with discontinuities given, up to 1+o(1) error, by variants of the so-called subgraph Kahn-Kalai threshold of the graph H. New stats meaning to the subgraph Kahn-Kalai thresholds!
- We characterize for each p which subgraphs of H are recoverable (onion decomposition).
- Both the onion decomposition and the MMSE curve can be computed in polynomal-time in |H|.

- The MMSE curve for large n is approx a piecewise constant function with discontinuities given, up to 1+o(1) error, by variants of the so-called subgraph Kahn-Kalai threshold of the graph H. New stats meaning to the subgraph Kahn-Kalai thresholds!
- We characterize for each p which subgraphs of H are recoverable (onion decomposition).
- Both the onion decomposition and the MMSE curve can be computed in polynomal-time in |H|.
- Corollary: AoN happens iff the graph H is balanced [MNWSSZ'22].

- The MMSE curve for large n is approx a piecewise constant function with discontinuities given, up to 1+o(1) error, by variants of the so-called *subgraph Kahn-Kalai threshold* of the graph H. **New stats meaning** to the subgraph Kahn-Kalai thresholds!
- We characterize for each p which subgraphs of H are recoverable (onion decomposition).
- Both the onion decomposition and the MMSE curve can be computed in polynomal-time in |H|.
- Corollary: AoN happens iff the graph H is balanced [MNWSSZ'22].
- Proofs via bounding MMSE: upper bound (key: minimax duality) lower bound via Bayesian proof of the fractional Kahn-Kalai conjecture [MNWSZ'22].

(Subgraph) Kahn-Kalai conjectures

Fix any $H = H_n$ in K_n .

Erdos & Renyi (60s) asked for $p_c(H)$:

The threshold $p=p_n$ that there is a copy of H in $G\sim G(n,p)$ w.h.p.?

(Subgraph) Kahn-Kalai conjectures

Fix any $H = H_n$ in K_n .

Erdos & Renyi (60s) asked for $p_c(H)$: The threshold $p=p_n$ that there is a copy of H in $G\sim G(n,p)$ w.h.p.?

• First moment method: $p_c(H) \ge p_{1M}(H) \sim n^{-v(H)/|H|}$ (for dense H). Not always tight...

Fix any $H = H_n$ in K_n .

Erdos & Renyi (60s) asked for $p_c(H)$: The threshold $p = p_n$ that there is a copy of H in $G \sim G(n, p)$ w.h.p.?

- First moment method: $p_c(H) \ge p_{1M}(H) \sim n^{-v(H)/|H|}$ (for dense H). Not always tight...
- Idea: If H appears in G all S ⊆ H appear in G. So,

$$p_c(H) \geq p_{\mathsf{KK}(H)} := \max_{S \subseteq H} p_{1\mathsf{M}}(S) \sim n^{-\min_{S \subseteq H} v(S)/|S|}$$

Fix any $H = H_n$ in K_n .

Erdos & Renyi (60s) asked for $p_c(H)$: The threshold $p = p_n$ that there is a copy of H in $G \sim G(n, p)$ w.h.p.?

- First moment method: $p_c(H) \ge p_{1M}(H) \sim n^{-v(H)/|H|}$ (for dense H). Not always tight...
- *Idea*: If H appears in G all $S \subseteq H$ appear in G. So,

$$p_c(H) \geq p_{\mathsf{KK}(H)} := \max_{S \subseteq H} p_{1\mathsf{M}}(S) \sim n^{-\min_{S \subseteq H} v(S)/|S|}$$

Tight for |H| = O(1) (Bollobas, 80s) and in special cases.

Fix any $H = H_n$ in K_n .

Erdos & Renyi (60s) asked for $p_c(H)$:

The threshold $p = p_n$ that there is a copy of H in $G \sim G(n, p)$ w.h.p.?

- First moment method: $p_c(H) \ge p_{1M}(H) \sim n^{-v(H)/|H|}$ (for dense H). Not always tight...
- *Idea*: If H appears in G all $S \subseteq H$ appear in G. So,

$$p_c(H) \geq p_{\mathsf{KK}(H)} := \max_{S \subseteq H} p_{1\mathsf{M}}(S) \sim n^{-\min_{S \subseteq H} v(S)/|S|}$$

Tight for |H|=O(1) (Bollobas, 80s) and in special cases. (KK'04): **Conjectured** to be tight up to log-factor for all $H=H_n$.

Fix any $H = H_n$ in K_n .

Erdos & Renyi (60s) asked for $p_c(H)$:

The threshold $p=p_n$ that there is a copy of H in $G\sim G(n,p)$ w.h.p.?

- First moment method: $p_c(H) \ge p_{1M}(H) \sim n^{-v(H)/|H|}$ (for dense H). Not always tight...
- *Idea*: If H appears in G all $S \subseteq H$ appear in G. So,

$$p_c(H) \geq p_{\mathsf{KK}(H)} := \max_{S \subseteq H} p_{1\mathsf{M}}(S) \sim n^{-\min_{S \subseteq H} v(S)/|S|}$$

Tight for |H| = O(1) (Bollobas, 80s) and in special cases. (KK'04): **Conjectured** to be tight up to log-factor for all $H = H_n$.

 Other variants by Kahn, Kalai and Talagrand proven tight (up-to-log) over the last years [FKNP'20], [PP'22].

Fix any $H = H_n$ in K_n .

Erdos & Renyi (60s) asked for $p_c(H)$: The threshold $p = p_n$ that there is a copy of H in $G \sim G(n, p)$ w.h.p.?

- First moment method: $p_c(H) \geq p_{1M}(H) \sim n^{-v(H)/|H|}$ (for dense H). Not always tight...
- *Idea*: If H appears in G all $S \subseteq H$ appear in G. So,

$$p_c(H) \geq p_{\mathsf{KK}(H)} := \max_{S \subseteq H} p_{1\mathsf{M}}(S) \sim n^{-\min_{S \subseteq H} v(S)/|S|}$$

Tight for |H| = O(1) (Bollobas, 80s) and in special cases. (KK'04): **Conjectured** to be tight up to log-factor for all $H = H_n$.

 Other variants by Kahn, Kalai and Talagrand proven tight (up-to-log) over the last years [FKNP'20], [PP'22]. Bayesian proof [MNWSZ'22].

Fix any $H = H_n$ in K_n .

Erdos & Renyi (60s) asked for $p_c(H)$: The threshold $p = p_n$ that there is a copy of H in $G \sim G(n, p)$ w.h.p.?

- First moment method: $p_c(H) \ge p_{1M}(H) \sim n^{-v(H)/|H|}$ (for dense H). Not always tight...
- *Idea*: If H appears in G all $S \subseteq H$ appear in G. So,

$$p_c(H) \geq p_{\mathsf{KK}(H)} := \max_{S \subseteq H} p_{1\mathsf{M}}(S) \sim n^{-\min_{S \subseteq H} v(S)/|S|}$$

Tight for |H| = O(1) (Bollobas, 80s) and in special cases. (KK'04): **Conjectured** to be tight up to log-factor for all $H = H_n$.

- Other variants by Kahn, Kalai and Talagrand proven tight (up-to-log) over the last years [FKNP'20], [PP'22]. Bayesian proof [MNWSZ'22].
- Subgraph Kahn-Kalai conjecture still open...

$$\mathsf{MMSE}_n(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2], \mathsf{G} = \mathcal{H} \cup \mathsf{G}_0, \mathsf{G}_0 \sim \mathsf{G}(\mathsf{n},\mathsf{p})$$

$$\mathsf{MMSE}_n(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2], \mathsf{G} = \mathcal{H} \cup \mathsf{G}_0, \mathsf{G}_0 \sim \mathsf{G}(\mathsf{n},\mathsf{p})$$

$$\mathsf{MMSE}_n(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2], \mathsf{G} = \mathcal{H} \cup \mathsf{G}_0, \mathsf{G}_0 \sim \mathsf{G}(\mathsf{n},\mathsf{p})$$

Fix a $q \in [0, 1]$: for which p, $MMSE_n(p) = 1 - q + o(1)$? i.e., what is the threshold p that one can recover a q-fraction of H?

• *Idea*: whenever **no** $S \subseteq H$, $|S| \le q|H|$ satisfies $H \setminus S \subseteq G_0 \sim G(n, p)$.

$$\mathsf{MMSE}_n(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2], \mathsf{G} = \mathcal{H} \cup \mathsf{G}_0, \mathsf{G}_0 \sim \mathsf{G}(\mathsf{n},\mathsf{p})$$

Fix a $q \in [0, 1]$: for which p, $\mathsf{MMSE}_\mathsf{n}(\mathsf{p}) = 1 - \mathsf{q} + \mathsf{o}(1)$? i.e., what is the threshold p that one can recover a q-fraction of H?

- *Idea*: whenever **no** $S \subseteq H$, $|S| \le q|H|$ satisfies $H \setminus S \subseteq G_0 \sim G(n, p)$.
- (Somewhat wild) guess for the q-thresholds for all H,

$$\mathsf{MMSE}_n(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2], \mathsf{G} = \mathcal{H} \cup \mathsf{G}_0, \mathsf{G}_0 \sim \mathsf{G}(\mathsf{n},\mathsf{p})$$

- Idea: whenever no $S \subseteq H$, $|S| \le q|H|$ satisfies $H \setminus S \subseteq G_0 \sim G(n,p)$.
- (Somewhat wild) guess for the q-thresholds for all H,

$$\min_{S\subseteq H, |S|\leq q|H|} p_c(H\setminus S)$$

$$\mathsf{MMSE}_n(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2], \mathsf{G} = \mathcal{H} \cup \mathsf{G}_0, \mathsf{G}_0 \sim \mathsf{G}(\mathsf{n},\mathsf{p})$$

- *Idea*: whenever **no** $S \subseteq H$, $|S| \le q|H|$ satisfies $H \setminus S \subseteq G_0 \sim G(n, p)$.
- (Somewhat wild) guess for the q-thresholds for all H,

$$\min_{S\subseteq H, |S|\leq q|H|} p_c(H\setminus S) \approx \min_{S\subseteq H, |S|\leq q|H|} p_{KK}(H\setminus S)$$

$$\mathsf{MMSE}_n(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2], \mathsf{G} = \mathcal{H} \cup \mathsf{G}_0, \mathsf{G}_0 \sim \mathsf{G}(\mathsf{n},\mathsf{p})$$

- *Idea*: whenever **no** $S \subseteq H$, $|S| \le q|H|$ satisfies $H \setminus S \subseteq G_0 \sim G(n, p)$.
- (Somewhat wild) guess for the q-thresholds for all H,

$$\begin{split} \min_{S\subseteq H, |S|\leq q|H|} p_c(H\setminus S) &\approx \min_{S\subseteq H, |S|\leq q|H|} p_{KK}(H\setminus S) \\ &= \min_{S\subseteq H, |S|\leq q|H|} \max_{J\subseteq H\setminus S} n^{-v(J)/|J|}. \end{split}$$

$$\mathsf{MMSE}_\mathsf{n}(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2], \mathsf{G} = \mathcal{H} \cup \mathsf{G}(\mathsf{n},\mathsf{p})$$

$$\mathsf{MMSE}_\mathsf{n}(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2], \, \mathsf{G} = \mathcal{H} \cup \mathsf{G}(\mathsf{n},\mathsf{p})$$

For any $q \in [0, 1]$, let $\phi_q = \min_{S \subset H, |S| \le q|H|} p_{KK}(H \setminus S)$.

$$\mathsf{MMSE}_\mathsf{n}(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2], \, \mathsf{G} = \mathcal{H} \cup \mathsf{G}(\mathsf{n},\mathsf{p})$$

For any $q \in [0, 1]$, let $\phi_q = \min_{S \subseteq H, |S| \le q|H|} p_{KK}(H \setminus S)$. Note: $\phi_0 = p_{KK}(H)$, $\phi_1 := 0$, and ϕ_q decreases.

$$\mathsf{MMSE}_{\mathsf{n}}(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2], \, \mathsf{G} = \mathcal{H} \cup \mathsf{G}(\mathsf{n},\mathsf{p})$$

For any $q \in [0, 1]$, let $\phi_q = \min_{S \subseteq H, |S| \le q|H|} p_{KK}(H \setminus S)$. Note: $\phi_0 = p_{KK}(H)$, $\phi_1 := 0$, and ϕ_q decreases.

Theorem [LPRZ'25]

For any weakly dense H, there exists $q_0 = 0 < q_1 < \ldots < q_M = 1$ s.t.

- for i = 0, if $p \ge (1 + o(1))\phi_{q_0}$, MMSE_n(p) = 1 o(1).
- for i = 0, 1, . . . , M 1, $p \in ((1+o(1))\phi_{q_{i+1}}, (1-o(1))\phi_{q_{i}}), \mathsf{MMSE}_n(p) = 1 q_{i+1} + o(1).$
- The q_i , ϕ_{q_i} , $i=1,\ldots,M$ can be computed in poly-time in |H|.

$$\mathsf{MMSE}_n(\mathsf{p}) := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2], \, \mathsf{G} = \mathcal{H} \cup \mathsf{G}(\mathsf{n},\mathsf{p})$$

For any $q \in [0, 1]$, let $\phi_q = \min_{S \subseteq H, |S| \le q|H|} p_{KK}(H \setminus S)$. Note: $\phi_0 = p_{KK}(H)$, $\phi_1 := 0$, and ϕ_q decreases.

Theorem [LPRZ'25]

For any weakly dense H, there exists $\mathsf{q}_0 = 0 < \mathsf{q}_1 < \ldots < \mathsf{q}_M = 1$ s.t.

- for i = 0, if $p \ge (1 + o(1))\phi_{q_0}$, MMSE_n(p) = 1 o(1).
- for i = 0, 1, . . . , M 1, $p \in ((1+o(1))\phi_{q_{i+1}}, (1-o(1))\phi_{q_{i}}), \mathsf{MMSE}_n(p) = 1 q_{i+1} + o(1).$
- The q_i , ϕ_{q_i} , $i=1,\ldots,M$ can be computed in poly-time in |H|.
- For all H, the subgraph Kahn-Kalai threshold p_{KK}(H) is the weak recovery threshold! (a.k.a. condensation threshold!)

Pictorial representation

Fix a weakly dense $H=H_{n}$. The for large enough n:

Refining the picture: MMSE characterization v2

Onion Decomposition of H

Input H, i = 1, $S_0 = \emptyset$.

- 1. Let $S_i = \text{arg\,max}_{S_{i-1} \subseteq S \subseteq H} \, |S| / v(S)$ (densest subgraph containing $S_{i-1})$
- 2. Unless $H \setminus S_i = \emptyset$ repeat step 1 for $i \leftarrow i+1$.

Output: $\mathsf{S}_0=\emptyset\subseteq\mathsf{S}_1\subseteq\mathsf{S}_2\subseteq\ldots\subseteq\mathsf{S}_M=\mathsf{H}.$

Refining the picture: MMSE characterization v2

Onion Decomposition of H

Input H, i = 1, $S_0 = \emptyset$.

- 1. Let $S_i = \text{arg\,max}_{S_{i-1} \subseteq S \subseteq H} |S| / v(S)$ (densest subgraph containing $S_{i-1})$
- 2. Unless $H \setminus S_i = \emptyset$ repeat step 1 for $i \leftarrow i + 1$.

Output: $\mathsf{S}_0=\emptyset\subseteq\mathsf{S}_1\subseteq\mathsf{S}_2\subseteq\ldots\subseteq\mathsf{S}_M=\mathsf{H}.$

(Refined) Theorem [LPRZ'25]

For any weakly dense H, let $q_i = |S_i|/|H|$, i = 1, ..., M for S_i o.d. of H

- for i = 0, if $p \ge (1 + o(1))\phi_{q_0}$, MMSE_n(p) = 1 o(1).
- for $i=0,1,\ldots$, M-1, $p\in ((1+o(1))\phi_{q_{i+1}},(1-o(1))\phi_{q_{i}})$, $\mathsf{MMSE}_n(p)=1-q_{i+1}+o(1)$.
- $\phi_{q_i} = n^{-v(S_i \setminus S_{i-1})/|S_i \setminus S_{i-1}|}$, $i = 1, \ldots, M$.
- The q_i , ϕ_{q_i} , $i=1,\ldots,M$ can be computed in poly-time in |H|. (Leveraging an elegant LP relaxation [Cha'00]!)

Pictorial representation v2

Fix a weakly dense $H=H_{n}$. The for large enough n:

Let n vertices, \mathcal{PC} a random k-clique and $G = \mathcal{PC} \cup G_0$, $G_0 \sim \mathcal{G}(n,p)$. Then, if say $k = 2\log_2 n$,

$$\underset{n}{\text{lim}}\,\mathsf{MMSE}_n := \frac{2}{\mathsf{k}(\mathsf{k}-1)}\mathbb{E}[\|\mathbf{1}(\mathcal{PC}) - \mathbb{E}[(\mathbf{1}(\mathcal{PC})|\mathsf{G}]\|_2^2] = \left\{ \begin{array}{ll} 1 & \mathsf{p} > 1/2 \\ 0 & \mathsf{p} < 1/2 \end{array} \right.$$

Let n vertices, \mathcal{PC} a random k-clique and $G=\mathcal{PC}\cup G_0$, $G_0\sim \mathcal{G}(n,p)$. Then, if say $k=2\log_2 n$,

$$\underset{n}{\text{lim}}\,\mathsf{MMSE}_n := \frac{2}{\mathsf{k}(\mathsf{k}-1)}\mathbb{E}[\|\mathbf{1}(\mathcal{PC}) - \mathbb{E}[(\mathbf{1}(\mathcal{PC})|\mathsf{G}]\|_2^2] = \left\{ \begin{array}{ll} 1 & \mathsf{p} > 1/2 \\ 0 & \mathsf{p} < 1/2 \end{array} \right.$$

Onion decomposition of H: S₁ = H

Let n vertices, \mathcal{PC} a random k-clique and $G = \mathcal{PC} \cup G_0$, $G_0 \sim \mathcal{G}(n,p)$. Then, if say $k = 2\log_2 n$,

$$\underset{n}{\text{lim}}\,\mathsf{MMSE}_n := \frac{2}{\mathsf{k}(\mathsf{k}-1)}\mathbb{E}[\|\mathbf{1}(\mathcal{PC}) - \mathbb{E}[(\mathbf{1}(\mathcal{PC})|\mathsf{G}]\|_2^2] = \left\{ \begin{array}{ll} 1 & \mathsf{p} > 1/2 \\ 0 & \mathsf{p} < 1/2 \end{array} \right.$$

• Onion decomposition of H: $S_1=H$, $q_1=|S_1|/|H|=1$ and $\phi_{q_0}=p_{KK}(H)=1/2$.

Let n vertices, \mathcal{PC} a random k-clique and $G = \mathcal{PC} \cup G_0$, $G_0 \sim \mathcal{G}(n,p)$. Then, if say $k = 2\log_2 n$,

$$\underset{n}{\text{lim}}\,\mathsf{MMSE}_n := \frac{2}{\mathsf{k}(\mathsf{k}-1)}\mathbb{E}[\|\boldsymbol{1}(\mathcal{PC}) - \mathbb{E}[(\boldsymbol{1}(\mathcal{PC})|\mathsf{G}]\|_2^2] = \left\{ \begin{array}{ll} 1 & \mathsf{p} > 1/2 \\ 0 & \mathsf{p} < 1/2 \end{array} \right.$$

- Onion decomposition of H: $S_1 = H$, $q_1 = |S_1|/|H| = 1$ and $\phi_{q_0} = p_{KK}(H) = 1/2$.
- By our Theorem:
 MMSE jumps from 1 o(1) to o(1) at p = 1/2.

Let n vertices, $\mathcal{H}=C_1\cup C_2$ disjoint union of random k_1 -clique and a k_2 -clique and $G=\mathcal{H}\cup G_0, G_0\sim \mathcal{G}(n,p)$.

Then, if say $k_1 = 2 \log_2 n$, $k_2 = \log_2 n$,

$$\lim_{n} \mathsf{MMSE}_n := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2] = \left\{ \begin{array}{ll} 1 & \mathsf{p} > 1/2 \\ 1/5 & 1/4 < \mathsf{p} < 1/2 \\ 0 & \mathsf{p} < 1/4 \end{array} \right.$$

Let n vertices, $\mathcal{H}=C_1\cup C_2$ disjoint union of random k_1-clique and a k_2-clique and $G=\mathcal{H}\cup G_0, G_0\sim \mathcal{G}(n,p)$.

Then, if say $k_1 = 2\log_2 n$, $k_2 = \log_2 n$,

$$\lim_{n} \mathsf{MMSE}_n := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2] = \left\{ \begin{array}{ll} 1 & p > 1/2 \\ 1/5 & 1/4$$

Onion decomposition of H: S₁ k₁-clique, S₂ = H.

Let n vertices, $\mathcal{H}=\mathsf{C}_1\cup\mathsf{C}_2$ disjoint union of random k_1 -clique and a k_2 -clique and $\mathsf{G}=\mathcal{H}\cup\mathsf{G}_0,\mathsf{G}_0\sim\mathcal{G}(\mathsf{n},\mathsf{p}).$

Then, if say $k_1 = 2 \log_2 n$, $k_2 = \log_2 n$,

$$\lim_{n} \mathsf{MMSE}_n := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2] = \left\{ \begin{array}{ll} 1 & \mathsf{p} > 1/2 \\ 1/5 & 1/4 < \mathsf{p} < 1/2 \\ 0 & \mathsf{p} < 1/4 \end{array} \right.$$

• Onion decomposition of H: S₁ k₁-clique, S₂ = H. $\mathsf{q}_1 = |\mathsf{S}_1|/|\mathsf{H}| = 4/5, \mathsf{q}_2 = 1, \text{ and } \phi_{\mathsf{q}_0} = \mathsf{p}_{\mathsf{KK}}(\mathsf{H}) = 1/2, \phi_{\mathsf{q}_1} = 1/4.$

14 / 16

Let n vertices, $\mathcal{H}=\mathsf{C}_1\cup\mathsf{C}_2$ disjoint union of random k_1 -clique and a k_2 -clique and $\mathsf{G}=\mathcal{H}\cup\mathsf{G}_0,\mathsf{G}_0\sim\mathcal{G}(\mathsf{n},\mathsf{p}).$

Then, if say $k_1 = 2 \log_2 n$, $k_2 = \log_2 n$,

$$\lim_{n} \mathsf{MMSE}_n := \frac{1}{|\mathcal{H}|} \mathbb{E}[\|\mathbf{1}(\mathcal{H}) - \mathbb{E}[(\mathbf{1}(\mathcal{H})|\mathsf{G}]\|_2^2] = \left\{ \begin{array}{ll} 1 & p > 1/2 \\ 1/5 & 1/4$$

- Onion decomposition of H: S₁ k₁-clique, S₂ = H. $q_1 = |S_1|/|H| = 4/5, q_2 = 1$, and $\phi_{q_0} = p_{KK}(H) = 1/2, \phi_{q_1} = 1/4$.
- By our Theorem: MMSE jumps from 1 o(1), to 1/5 + o(1) at p = 1/2, and to o(1) at p = 1/4.

This work

For any planted subgraph problem $w/H=H_n$ weakly dense $(|H|\gg v(H)\log v(H))$ we characterize for large n the MMSE curve.

- The MMSE curve for large n is a piecewise constant function with discontinuities given, up to 1 + o(1) error, by variants of the so-called *subgraph Kahn-Kalai threshold* of the graph H. **New stats meaning** to the subgraph Kahn-Kalai thresholds!
- We characterize for each p which subgraphs of H are recoverable (onion decomposition).
- Both the onion decomposition and the MMSE curve can be computed in polynomal-time in |H|.
- Corollary: AoN happens iff the graph H is balanced [MNWSSZ'22].
- **Proofs** via bounding MMSE: upper bound (key: minimax duality) lower bound via *Bayesian proof* of the fractional Kahn-Kalai conjecture [MNWS**Z**'22].

• See paper: A weaker general theory but for all $H = H_n!$ Thresholds ϕ_q given by variants of fractional Kahn-Kalai thresholds. Weakness: Correct up to constants, not 1 + o(1).

- See paper: A weaker general theory but for all $H = H_n!$ Thresholds ϕ_q given by variants of fractional Kahn-Kalai thresholds. Weakness: Correct up to constants, not 1 + o(1).
- Q1 Can we get tight results for sparse graphs H, like *perfect matching?* Interesting literature (CKKVZ'20), (SSZ'20), (DWXY'20), (GSXY'25), yet not tight bounds.

- See paper: A weaker general theory but for all $H = H_n!$ Thresholds ϕ_q given by variants of fractional Kahn-Kalai thresholds. Weakness: Correct up to constants, not 1 + o(1).
- Q1 Can we get tight results for sparse graphs H, like *perfect matching?* Interesting literature (CKKVZ'20), (SSZ'20), (DWXY'20), (GSXY'25), yet not tight bounds.
- Q2 Inherent connection between MMSE and Kahn-Kalai thresholds. Can these results be proven via *statistical physics techniques?*

- See paper: A weaker general theory but for all $H = H_n!$ Thresholds ϕ_q given by variants of fractional Kahn-Kalai thresholds. Weakness: Correct up to constants, not 1 + o(1).
- Q1 Can we get tight results for sparse graphs H, like *perfect matching?* Interesting literature (CKKVZ'20), (SSZ'20), (DWXY'20), (GSXY'25), yet not tight bounds.
- Q2 Inherent connection between MMSE and Kahn-Kalai thresholds. Can these results be proven via *statistical physics techniques?*
- Q3 We proved ϕ_q are the correct thresholds, but without proving the subgraph Kahn-Kalai conjecture. Still open...

- See paper: A weaker general theory but for all $H = H_n!$ Thresholds ϕ_q given by variants of fractional Kahn-Kalai thresholds. Weakness: Correct up to constants, not 1 + o(1).
- Q1 Can we get tight results for sparse graphs H, like *perfect matching?* Interesting literature (CKKVZ'20), (SSZ'20), (DWXY'20), (GSXY'25), yet not tight bounds.
- Q2 Inherent connection between MMSE and Kahn-Kalai thresholds. Can these results be proven via *statistical physics techniques?*
- Q3 We proved ϕ_q are the correct thresholds, but without proving the subgraph Kahn-Kalai conjecture. Still open...
- Q4 Clear argument for thinking in generality (**not** case by case for H). Similar story in low-deg lower bounds for planted subgraphs (Y**Z**Z'24). Beyond?

- See paper: A weaker general theory but for all $H=H_n!$ Thresholds ϕ_q given by variants of fractional Kahn-Kalai thresholds. Weakness: Correct up to constants, not 1+o(1).
- Q1 Can we get tight results for sparse graphs H, like *perfect matching?* Interesting literature (CKKVZ'20), (SSZ'20), (DWXY'20), (GSXY'25), yet not tight bounds.
- Q2 Inherent connection between MMSE and Kahn-Kalai thresholds. Can these results be proven via *statistical physics techniques?*
- Q3 We proved ϕ_q are the correct thresholds, but without proving the subgraph Kahn-Kalai conjecture. Still open...
- Q4 Clear argument for thinking in generality (**not** case by case for H). Similar story in low-deg lower bounds for planted subgraphs (YZZ'24). Beyond?

Thank you!!