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Neural networks 
memorize their 
training data.

What is memorization?

What is its role in generalization?
      Is it benign?      useful?       ... necessary?!

Can we mitigate some forms of memorization?

What does this mean for generalization?



What is memorization?

Reconstruction of training 
inputs (partial/whole images 
or text) by interacting with 
the model:

● Information-theoretic 
measures I(S;θ)

E.g., comparing A(S) and
                            A(S∖{z})  

Mem(z) 
  = Pr(correct class | A(S)) -
     Pr(correct class | A(S∖z)) 

                          (Feldman 2020)

Reconstruction-based* Leave-k-out-based

A number of formal and informal definitions exist…

Predicting whether examples 
were in training set.

● Membership Inference 
attacks.

● Information-theoretic 
measures that condition on 
a super sample I(S,θ|Z)

Membership-based
   (“tracing”)

*It's not that a model includes a literal copy of any of its training data, but rather whether a model can be induced to generate near-copies of some 
training examples when prompted by appropriate techniques and instructions.



Memorization and Learning: Basic Facts.

➢ Excessive memorization and generalization are compatible.
○ E.g., 1-nearest neighbor converges to 2*Bayes Risk. 

➢ Learning with differential privacy comes at a steep cost.
○ Sample complexity scales very poorly with dimension.
○ Motivates "unlearning" approaches to avoid DP.

➢ High average generalization error implies memorization.
○ Defn. Generalization error = test error - training error.
○ If generalization error not O(1/sqrt(n)), there's a growing 

amount of information about the training data in the 
learned predictor.



NNs trained by SGD 
    can memorize randomized labels

● SGD is not limiting model capacity: models are 
trained to zero error, thus capable of 
memorization.

Take away: Generalization and 
memorization can happen 
simultaneously.

Zhang et al. (ICLR 2017)

● Generalization remains good under nontrivial 
memorization.



➢ Benign overfitting in overparameterized linear regression (Bartlett et al. 

2020) and shallow neural networks (Frei et al. 2022; Kuo et al. 2023).

➢ No uniform convergence for predictor,
but uniform convergence for surrogate predictor 
(Negrea, Dziugaite and Roy 2020). 

Can we have generalization without memorization?

Benign overfitting (memorization)

From Empirical (Zhang et al.) to Theoretical Understanding:



Learning may require memorization

Feldman constructs a family of long-tailed data 
distributions and proves a type of memorization 
is necessary on average for achieving 
close-to-optimal generalization in classification.

Feldman (STOC 2020)



Memorization necessary in high-dim
Stochastic Convex Optimization (SCO)

Links optimal learning 
and tracing.

Memorization can be necessary!

Attias et al. (ICML 2024)



Why study Stochastic Convex Optimization?

  

 

labelled example

Loss function, convex for fixed z

Unknown data 
distribution

Example: 
logistic regression, SVM

➢ Well studied: we know optimal learning rates and algorithms in this setting;
➢ Rich enough to exhibit many "deep learning" phenomena

○ Benign overfitting
○ Algorithms matter:  Arbitrary ERMs require # samples that scales with # params; 

                                   while SGD requires a # samples independent of dimension.

predictor



How should we evaluate a predictor?

What is the minimum information that a learning algorithm must retain 
from its training set to achieve small excess error?

Data 
Dist D

Predictor
A(Sn) = θ

Sn={Z1,Z2,...,Zn}
Alg
A( . )

Compare to nature, 
which knows D!



Traceability as a notion of Memorization

Data 
Dist D

Predictor
A(S) = θ

S={Z1,Z2,...,Zn}
Alg
A( . )

Can an adversary trace the training data points just by looking at the final model?

        ZG

IN/OUT decision



What defines a powerful adversary?

Carlini,Chien,Nasr,Song,Terzis,Tramer 2022
Dwork,Smith,Steinke,Ullman,Vadhan 2015

𝛼-sound: The adversary rarely accuses a fresh data point of 
being from the training set (a low false positive rate). 
Should be small.

certifies a recall of m examples: The adversary successfully 
identifies at least m training examples. 
Should be large.

If such an adversary exists, we say the learning algorithm memorizes m samples.

Traceability allows us to lower bound a notion of information, establishing a clear connection 
to memorization.

Alg is (𝛼,m)-traceable if ∃ training dist and adversary 
that is 𝛼-sound and certifies a recall of m examples.



Our key result: Memorization can be necessary 

Dimensionality dependence is near optimal: 
We can learn privately when n is larger (thus ensuring no tracing/memorization!)

Theorem (Attias et al. 2024). Fix 𝛼 in [0,1].
There exists  1. a d-dimensional SCO problem with a convex, 1-Lipschitz loss and
                       2. an 𝛼-sound, efficient adversary
s.t. for every learning alg. achieving ε excess error with n samples, d > Ω(n2log n/𝛼),
      there exists a data distribution D 
      s.t. the adversary certifies a recall of a Ω(1/ε2) samples.

Given a sample efficient learner, some dist. D forces memorization of a 
constant fraction of its data:  Recall rate Ω(1/ε2) matches minmax sample complexity.



Connecting traceability to a notion of information
Using conditional mutual information (CMI; Steinke and Zakynthinou '20) ,
we measure dependence between the training data and the learned model.

…

…

0 1 … 0 0

Membership vector

Supersample

 

 

…

CMI(A) =I(A(S);U|Z)

S =

U =

Z =

Training data E[Gen.Error] 

 



Limitation of CMI Framework for Proving Generalization 

Minimum sample complexity

Existence of adversary that is sound and satisfies 
constant fraction recall, yields a lower bound on CMI.

excess err (θ) ≤ train err (θ) - min train err.
+ risk (θ) - train err (θ)

E[Gen.Error] 

⇒ if n = Ω(1/ε2) then E[Gen.Error] is Ω(1) 

at least  1/(nε2)

CMI =I(θ;U|Z) = H(U) - H(U|Z,θ)



What’s the relationship between privacy and traceability?

Sharp phase transition:

There is no free lunch: optimal accuracy comes at the cost of being traceable.

● High Error Regime: If you are okay with higher error, you can use techniques like 
Differential Privacy (DP) to build a non-traceable model.

● Low Error Regime: If you want to achieve the best possible accuracy, traceability is 
unavoidable. Any algorithm that does better than a private one must reveal its 
sources.



Take home: Sometimes memorization is necessary for learning.

However, not all memorization is good for generalization!



What examples should we train on?

We proposed a simple score for measuring an example’s 
influence on generalization:

Score is based on statistics early in training.

High Score → High Influence

Key experiment: We remove the lowest score examples 
and only train on the highest score examples.



Early in training, we can 

➢ identify important-for-generalization 
examples, 

➢ match accuracy of full data training, and
➢ perform as well as pruning based on 

statistics throughout the full training run.

Finding: a small subset of the training data suffices



What is the role of these highest scoring examples?

Experiment:

● Prune (i.e., skip) the low score examples (offset)
● Train only on the next s% easiest

Excluding a small subset of the 
highest scoring examples yields a 
boost in performance compared to 
training on the full dataset  or 
random subset!



Visually the highest scoring examples seem “difficult”

Low score - easy / typical examples

High score - difficult examples / outliers



Taking difficulty to the extreme

● Randomly select 10% of examples, and 
randomly re-assign a new wrong label;

● Trained network makes perfect 
predictions, indicating memorization. 

● These random label examples get 
assigned high score.

Removing these high-score memorized examples 
improved generalization!



Key learnings from data diet

Most difficult examples tend to be:
●  memorized and 
●  have high influence on generalization.

If negative: removing these examples, 
                       and thus avoiding their memorization 
                           may improve generalization.

Influence: positive or negative? 

Depends on the nature of the data.



Similar message from our pruning work: 

Underfitting some examples 
may improve generalization



Some memorization is needed for good 
generalization…

(at least fixing other params, like SGD and its variants, architectures, 
data we deal with, etc…)

... and not all memorization is good.

Asking for no memorization may be too much. 

Ask for less!



To what extent can we control memorization without hurting 
generalization?

1. Control unwanted memorization example frequency in the training set.

3. Consider pruning  - turns out facts are affected but not ICL! – can combine with 
external memory approaches 

0. Employ differential privacy: well-studied, simple adjustment to training, known
limitations, effects on performance, etc. NEEDS TONS OF DATA. 

2. Apply unlearning to mitigate memorization.

4. Modify architecture (through modularity, RAG, etc.)



Control unwanted memorization via 
controlling example frequency in the 
training set



To what extent can we control memorization without hurting 
generalization?

1. Control unwanted memorization example frequency in the training set.

3. Consider pruning  - turns out facts are affected but not ICL! – can combine with 
external memory approaches 

0. Employ differential privacy: well-studied, simple adjustment to training, known
limitations, effects on performance, etc. NEEDS TONS OF DATA. 

2. Apply unlearning to mitigate memorization.

4. Modify architecture (through modularity, RAG, etc.)



What’s unlearning?

Data 
Dist D

Predictor
A(Sn) = θ

Sn={Z1,Z2,...,Zn}
Alg
A( . )

Predictor
A(S\S’) = θ’

S\S’, S’⊂S 
Alg
A( . )

θ and θ’ 
close



Unlearning is not equally effective for all examples

- Unlearning memorized outliers 
is “easier” - does not damage 
performance.

- Unlearning in-distribution 
samples may be detrimental to 
performance. Exposure -  how likely is it that the model 

generates the string of interest vs other 
“related” strings 

Compared unlearning and performance 
trade-off for in vs out of distribution 
samples:



How does repetition affect unlearning?

High repetitions 

→ More difficult to unlearn

(at least for in-distribution examples)

Higher 
repetition



More difficult examples

→ More difficult to unlearn

(differences are especially large under 
high repetitions)

Connection between example difficulty and unlearning



The Problem: Unlearning difficulty is 
data-dependent, but we lack a formal way to 
measure it.

The Proposal: Leverage per-instance privacy 
loss: 

Instead of a single, worst-case DP guarantee, 
per-instance privacy loss bounds Renyi 
divergence between a model trained with 
and without a specific data point (Thudi et 
al.).

Moving Beyond Heuristics: from data difficulty to privacy



↥ per-instance privacy loss               ⇒         ↥  more unlearning steps 

Per-Instance Privacy Loss Predicts Unlearning Difficulty



Geometric intuition



Unlearning may mitigate memorization …

But with some caveats.

- Depends on the nature of the set we want to unlearn;

- How many times this data appeared during training;

- And what unlearning algorithm was used.

- Could other examples her “more memorized” as a result? 
(Privacy onion effect)



To what extent can we control memorization without hurting 
generalization?

1. Control unwanted memorization example frequency in the training set.

3. Consider pruning  - turns out facts are affected but not ICL! – can combine with 
external memory approaches 

0. Employ differential privacy: well-studied, simple adjustment to training, known
limitations, effects on performance, etc. NEEDS TONS OF DATA. 

2. Apply unlearning to mitigate memorization.

4. Modify architecture (through modularity, RAG, etc.)



We've seen evidence that pruning introduces 
data-dependent regularization in classification.

How about in LLMs? 

How does pruning affect different capabilities? 

Can pruning be used to mitigate 
memorization?



Most generic tasks demand both capabilities. 
How do we disentangle them? 

Learning from context

Context:

Q::  Who created  Wikipedia ?

Answer:

Fact Recall
from pretraining data

Q:: 
Who created 
Wikipedia ?

Answer:

Two key capabilities: Fact Recall vs ICL



Context:

Q:uestion:: What is…

Open Book QA
(TriviaQA, NaturalQA)

Context:

Q:uestion:: What is …

Overriding QA
(DissentQA)

 (Neeman et al. 2022, 
Li et al., 2022; 

Longpre et al., 2021)

≠

Fact 
Recall 

In-context
Learning

Generic 
Classification

Context:
x1, f(x1)
x2, f(x2)
x3, f(x3)

Q:uestion:: xtest

(f is
    linear/
    decision tree/
    perceptron)

Closed Book QA
(TriviaQA, WebQA)

Q:uestion:: What is…

Disentangling fact recall and ICL capabilities



How could pruning affect a capability?



Pruning seems to be promising as a tool to mitigate fact memorization!

Pruning hurts fact recall first!

Fact recall 
deteriorates quicker 
(5% drop around 
30% of pruning) 

while in-context 
learning withstands 
as much as 60-70% 
pruning



Improve 
interpretability 

Is there a small module 
that is responsible for 
in-context learning?

Control fact recall and 
Improve inference-time 

compute efficiency

Retrieve evidence into context 
+ route to smaller model

Router

Q:uestion: …

Improve 
pruning

Prune MLP layers more than 
attention?

How can these findings be used?



To what extent can we control memorization without hurting 
generalization?

1. Control unwanted memorization example frequency in the training set.

3. Consider pruning  - turns out facts are affected but not ICL! – can combine with 
external memory approaches 

0. Employ differential privacy: well-studied, simple adjustment to training, known
limitations, effects on performance, etc. NEEDS TONS OF DATA. 

2. Apply unlearning to mitigate memorization.

4. Modify architecture (through modularity, RAG, etc.)



Summary

➢ Sometimes memorization is not only benign, it's necessary.

➢ Not all memorization is good for generalization! 
○ Maybe somewhat mitigated by overparameterization. But costly!
○ Careful data selection, curation and curriculum matter;
○ May want to employ some form of data-dependent regularization.

➢ Removing memorization completely might not be a good choice.
○ Unless massive datasets (relative to D) are available for DP learning to actually 

work well. But as we scale the data, we scale D….

➢ Memorization can be mitigated in creative ways.
○ Unlearning; Pruning; Architectural changes (e.g., modularity, external memory)



Open Questions

➢ What architectural changes 
would be best for controlling 
information access without 
losing performance?

➢ Can we identify ahead of time 
which examples are most 
likely to be memorized?

➢ What’s the tradeoff between 
learning and memorization? 

➢ Can we identify what to 
memorize to maximize 
generalization?

➢ What does the necessity to 
memorize mean for 
unlearning?

Empirical…Theoretical…


