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Three months after November is [prompt]

Not All Language Model Features Are Linear [Engels et al 2024]
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Three months after November is [prompt]

(3 + 11) % 12 = [prompt]

99 % accuracy

∼8 % accuracy

Llama 3 8B

Not All Language Model Features Are Linear [Engels et al 2024]
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Emergent Abilities of Large Language Models
[Wei et al ’22]

# Model Scale

Scaling Laws for Neural Language Models
[Kaplan et al ’22]

# Model Scale
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LLMs exhibit as many failure modes as capabilities.
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LLMs exhibit as many failure modes as capabilities.

How do they fail? (When do their capabilities emerge?)



• Architecture: Capacity too small?

• Training: Memorizing the data instead of generalizing? 

• Data: Too few samples available to generalize?
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LLMs exhibit as many failure modes as capabilities.

How do they fail? (When do their capabilities emerge?)



• Architecture: Capacity too small?

• Training: Memorizing the data instead of generalizing? 

• Data: Too few samples available to generalize?
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LLMs exhibit as many failure modes as capabilities.

How do they fail? (When do their capabilities emerge?)

What is the performance of the learned model? 

How is the performance influenced by external factors? 
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LLMs exhibit as many failure modes as capabilities.
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LLMs exhibit as many failure modes as capabilities.

Debug: Inspect and understand model internals

Which features or mechanisms did the model learn? 
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LLMs exhibit as many failure modes as capabilities.

Debug: Inspect and understand model internals

Which features or mechanisms did the model learn? 

[Nitakin et al ‘24][Wang et al ‘22][Miklov et al ‘15][Bricken et al ‘23]

Examples:
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LLMs exhibit as many failure modes as capabilities.

To fix pre-training: How does this depend on external factors?
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LLMs exhibit as many failure modes as capabilities.

[Troiani et al ‘24]

Examples:

[Saxe et al ‘22] [Nichani et al ‘24]

To fix pre-training: How does this depend on external factors?



• Part 1 : A Phase Transition Between Semantic and Positional Learning
arXiv:2402.03902 – Hugo Cui, Freya Behrens, Florent Krzakala, Lenka Zdeborová

How is the learned algorithm determined by the sample complexity? 
Do different algorithms emerge spontaneously?

• Part 2 : The Interplay between Attention and Feed-Forward Layers
arXiv:2407.11542 – Freya Behrens, Luca Biggio, Lenka Zdeborová

How is the learned algorithm determined by architectural choices?
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Which functions are executed by which parts?



Which functions are executed by which parts?

• Part 1 : A Phase Transition Between Semantic and Positional Learning
arXiv:2402.03902 – Hugo Cui, Freya Behrens, Florent Krzakala, Lenka Zdeborová

How is the learned algorithm determined by the sample complexity? 
Do different algorithms emerge spontaneously?

• Part 2 : The Interplay between Attention and Feed-Forward Layers
arXiv:2407.11542 – Freya Behrens, Luca Biggio, Lenka Zdeborová

How is the learned algorithm determined by architectural choices?

17



18

Algorithms use the information encoded in a sentence ….

We analyze a phase transition between positional and semantic meaning



19

We sanitize a face ambition between rational and acrylic baking 

Algorithms use the information encoded in a sentence ….

In the meaning of the tokens (semantics)

We analyze a phase transition between positional and semantic meaning
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A between a phase semantic learning and positional analyze transition 

We sanitize a face ambition between rational and acrylic baking 

Algorithms use the information encoded in a sentence ….

In the meaning of the tokens

And their ordering in the sentence

(semantics)

(positions)

We analyze a phase transition between positional and semantic meaning
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(embedded)
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𝑥1

𝑥2
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𝑥6

×

𝐿

𝐿𝐿

𝑑

Input sentence
(embedded)

𝑺(𝒙) ∈ ℝ𝐿×𝐿 𝒙 ∈ ℝ𝐿×𝑑

Attention matrix:
mixes tokens together with a 
matrix
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𝑦4

𝑦5

𝑦6

=
×

𝐿

𝐿𝐿 𝐿

𝑑
𝑑

Context vector:
fed to a feed-forward architecture 
for further feature extraction

Input sentence
(embedded)

𝒚 ∈ ℝ𝐿×𝑑 𝑺(𝒙) ∈ ℝ𝐿×𝐿 𝒙 ∈ ℝ𝐿×𝑑

Attention matrix:
mixes tokens together with a 
matrix
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𝑆(𝑥)𝑖𝑗 = 𝑆(𝑥𝑖 , 𝑥𝑗 , 𝑖, 𝑗) Dependence on the positions 𝑖, 𝑗  and the tokens, 𝑥𝑖𝑥𝑗
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𝑆(𝑥)𝑖𝑗 = 𝑆(𝑥𝑖 , 𝑥𝑗 , 𝑖, 𝑗) Dependence on the positions 𝑖, 𝑗  and the tokens, 𝑥𝑖𝑥𝑗

𝑆(𝑥)𝑖𝑗 = 𝑆(𝑥𝑖 , 𝑥𝑗 , 𝑖, 𝑗) Purely semantic attention mechanism
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𝑆(𝑥)𝑖𝑗 = 𝑆(𝑥𝑖 , 𝑥𝑗 , 𝑖, 𝑗) Dependence on the positions 𝑖, 𝑗  and the tokens, 𝑥𝑖𝑥𝑗

𝑆(𝑥)𝑖𝑗 = 𝑆(𝑥𝑖 , 𝑥𝑗 , 𝑖, 𝑗)

𝑆(𝑥)𝑖𝑗 = 𝑆(𝑥𝑖 , 𝑥𝑗 , 𝑖, 𝑗) Purely positional attention mechanism

Purely semantic attention mechanism

When does attention learn to implement positional/semantic mechanisms? 
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Histogram task : for each token, output the 
number of identical tokens in the sequence

𝑥 = (𝑎, 𝑏, 𝑏, 𝑐, 𝑐, 𝑎, 𝑐, 𝑐, 𝑏)input
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Histogram task : for each token, output the 
number of identical tokens in the sequence

𝑥 = (𝑎, 𝑏, 𝑏, 𝑐, 𝑐, 𝑎, 𝑐, 𝑐, 𝑏)input

𝑦 = (2, 3, 3, 4, 4, 2, 4 4, 3)target
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Histogram task : for each token, output the 
number of identical tokens in the sequence

𝑥 = (𝑎, 𝑏, 𝑏, 𝑐, 𝑐, 𝑎, 𝑐, 𝑐, 𝑏)input

With a 1-layer transformer, we can reach 
two (almost) zero-gradient configurations 
with different behaviors.

𝑦 = (2, 3, 3, 4, 4, 2, 4 4, 3)target
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A solvable model
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A solvable model

34

Goal:
For a given task
for a given architecture
characterize the different minima 
in an empirical loss landscape
as the sample complexity changes.

A phase transition?



A solvable model
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Goal:
For a given task
for a given architecture
characterize the different minima 
in an empirical loss landscape
as the sample complexity changes.

A phase transition?

(static!)
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𝑦1

𝑦2

𝑦3

𝑦4

𝑦5

𝑦6

=
×

𝐿

𝐿𝐿 𝐿

𝑑
𝑑

Context vector:
fed to a feed-forward architecture 
for further feature extraction

Input sentence
(embedded)

𝒚 ∈ ℝ𝐿×𝑑 𝑺(𝒙) ∈ ℝ𝐿×𝐿 𝒙 ∈ ℝ𝐿×𝑑

Attention matrix:
mixes tokens together with a 
matrix
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Data model 𝑥 =

𝑥1

𝑥2

…
𝑥𝐿

∈ ℝ𝐿×𝑑 𝑥ℓ ∼ 𝒩(0, Σℓ) ∈ ℝ𝑑With the ℓ-th token 
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Data model 𝑥 =

𝑥1

𝑥2

…
𝑥𝐿

∈ ℝ𝐿×𝑑 𝑥ℓ ∼ 𝒩(0, Σℓ) ∈ ℝ𝑑With the ℓ-th token 

Target

Target attention

with 𝐴 ∈ ℝ𝐿×𝐿, 𝑄∗ ∈ ℝ𝑑 
𝑦 𝑥 = (𝟏 − 𝝎) softmax

𝑥 𝑄∗𝑄∗
⊤𝑥⊤

𝑑
+ 𝝎𝐴 ⋅ 𝑥 
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Data model 𝑥 =

𝑥1

𝑥2

…
𝑥𝐿

∈ ℝ𝐿×𝑑 𝑥ℓ ∼ 𝒩(0, Σℓ) ∈ ℝ𝑑With the ℓ-th token 

𝝎 = 0

𝝎 = 𝟏 Target attention is purely positional

Target attention is purely semantic

Target 𝑦 𝑥 = (𝟏 − 𝝎) softmax
𝑥 𝑄∗𝑄∗

⊤𝑥⊤

𝑑
+ 𝝎𝐴 ⋅ 𝑥 

Target attention

with 𝐴 ∈ ℝ𝐿×𝐿, 𝑄∗ ∈ ℝ𝑑 
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Student 
𝑓𝑄 𝑥 = softmax

𝑥 + 𝑝 𝑄𝑄⊤ (𝑥 + 𝑝)⊤

𝑑
⋅ 𝑥

𝑝 ∈ ℝ𝐿×𝑑 are positional encodings. In the following for 𝐿 = 2, 𝑝 =
𝜇

−𝜇

, 𝑄 ∈ ℝ𝑑
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Student 

𝑝 ∈ ℝ𝐿×𝑑 are positional encodings. In the following for 𝐿 = 2, 𝑝 =
𝜇

−𝜇

ERM ෠𝑄 = argminQ ෍

𝜇=1

𝑛

𝑦 𝑥𝜇 − 𝑓𝑄 𝑥𝜇 2
+

𝜆

2
𝑄 2

𝑓𝑄 𝑥 = softmax
𝑥 + 𝑝 𝑄𝑄⊤ (𝑥 + 𝑝)⊤

𝑑
⋅ 𝑥 , 𝑄 ∈ ℝ𝑑
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Student 

𝑝 ∈ ℝ𝐿×𝑑 are positional encodings. In the following for 𝐿 = 2, 𝑝 =
𝜇

−𝜇

ERM ෠𝑄 = argminQ ෍

𝜇=1

𝑛

𝑦 𝑥𝜇 − 𝑓𝑄 𝑥𝜇 2
+

𝜆

2
𝑄 2

Asymptotic limit: 𝑑, 𝑛 → ∞, 𝑝 , 𝛼 = ൗ𝑛
𝑑 = Θ𝑑(1)

𝑓𝑄 𝑥 = softmax
𝑥 + 𝑝 𝑄𝑄⊤ (𝑥 + 𝑝)⊤

𝑑
⋅ 𝑥 , 𝑄 ∈ ℝ𝑑



𝒎 =
𝜇⊤𝑄

√𝑑
, 𝜽 =

𝑄∗
⊤𝑄

𝑑



𝒎 > 0 , 𝜽 = 0

We find two minima:

the elements are partly independent of 𝑥  : 
positional mechanism

𝒎 =
𝜇⊤𝑄

√𝑑
, 𝜽 =

𝑄∗
⊤𝑄

𝑑



𝒎 > 0 , 𝜽 = 0

We find two minima:

the elements are partly independent of 𝑥  : 
positional mechanism

the elements depend on 𝑥 :
semantic mechanism

𝒎 = 0, 𝜽 > 0

𝒎 =
𝜇⊤𝑄

√𝑑
, 𝜽 =

𝑄∗
⊤𝑄

𝑑
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𝒎 > 0 , 𝜽 = 0

𝒎 = 0, 𝜽 > 0

We find two minima:

the elements are partly independent of 𝑥  : 
positional mechanism

the elements depend on 𝑥 :
semantic mechanism

Positional minimum

Semantic minimum
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⊤𝑄

𝑑



47

Te
st

 e
rr

o
r 

at
 g

lo
b

al
 m

in

Sample complexity



48

Te
st

 e
rr

o
r 

at
 g

lo
b

al
 m

in

Sample complexity

Dot-product attention implements a 
positional mechanism to approximate the 
target
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… then learns a semantic mechanism with 
more data, leading to better generalization.  



Recap:

• Toy attention model which charachterizes a discrete phase transition 
between two algorithms (in terms of sample complexity)

• “Emergence” may be discrete in the sense of a first order phase transition
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Recap:

• Toy attention model which charachterizes a discrete phase transition 
between two algorithms (in terms of sample complexity)

• “Emergence” may be discrete in the sense of a first order phase transition

Questions :

• Dynamics – Does gradient-based training reliably find the minima?

• Architecture – Multiple layers?

• Data – More structured input data? Real tasks?
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Recap:

• Toy attention model which charachterizes a discrete phase transition 
between two algorithms (in terms of sample complexity)

• “Emergence” may be discrete in the sense of a first order phase transition

Questions :

• Dynamics – Does gradient-based training reliably find the minima?

• Architecture – Multiple layers?

• Data – More structured input data? Real tasks?
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→ 

arXiv:2506.02651arXiv:2502.00901

multiple layers
[Troiani et al 25]

dynamics
[Arnaboldi et al 25]



• Part 1 : A Phase Transition Between Semantic and Positional Learning
arXiv:2402.03902 – Hugo Cui, Freya Behrens, Florent Krzakala, Lenka Zdeborová

How is the learned algorithm determined by the sample complexity? 
Do different algorithms emerge spontaneously?

• Part 2 : The Interplay between Attention and Feed-Forward Layers
arXiv:2407.11542 – Freya Behrens, Luca Biggio, Lenka Zdeborová

How is the learned algorithm determined by architectural choices?

53

Which functions are executed by which parts?
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Input       -> Output
Ex1:[B,A,A,D,E] -> [1,2,2,1,1]
Ex2:[A,C,C,A,A] -> [3,2,2,3,3]
Ex3:[C,C,C,C,D] -> [ , , , , ]

Histogram task : for each token, output the number of identical tokens in the sequence
[Weiss et al ‘21]
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Input       -> Output
Ex1:[B,A,A,D,E] -> [1,2,2,1,1]
Ex2:[A,C,C,A,A] -> [3,2,2,3,3]
Ex3:[C,C,C,C,D] -> [4,4,4,4,1]

Histogram task : for each token, output the number of identical tokens in the sequence
[Weiss et al ‘21]
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Input       -> Output
Ex1:[B,A,A,D,E] -> [1,2,2,1,1]
Ex2:[A,C,C,A,A] -> [3,2,2,3,3]
Ex3:[C,C,C,C,D] -> [4,4,4,4,1]

Histogram task : for each token, output the number of identical tokens in the sequence

{A,B,C,D,E} – set of tokens
𝐿  –  sequence length
𝑇   –  alphabet size

[Weiss et al ‘21]



57

Why a counting task? 



• Counting: localization and subsequent measurement 

• Language models are bad/brittle at counting [Ouellette ‘24] 

• Contribute to understanding a zoology of algorithmic tasks in networks

58

Why a counting task? 
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Input       -> Output
Ex1:[B,A,A,D,E] -> [1,2,2,1,1]
Ex2:[A,C,C,A,A] -> [3,2,2,3,3]
Ex3:[C,C,C,C,D] -> [4,4,4,4,1]

Histogram task : for each token, output the number of identical tokens in the sequence

{A,B,C,D,E} – set of tokens
𝐿  –  sequence length
𝑇   –  alphabet size

(How) Can we solve the task with a one layer transformer?

[Weiss et al ‘21]
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We don’t want to deal with positional encodings
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Token Mixing Feature Mixing

p

d

d L

𝑎𝑖𝑗 =
1

𝑑
⟨𝑥𝑖𝑊𝑄 , 𝑥𝑗𝑊𝐾⟩ 

We don’t want to deal with positional encodings

Embedding, token and 
feature mixing are learned

- online
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In which regimes can we learn perfect solutions? 
d, p
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T=32, L=10
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$ + ⋅,⋅

dot+bos

d = T

𝛼

What are possible mechanisms?

Ex1:[$,B,A,A,D,E] -> [-,1,2,2,1,1]
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$ + ⋅,⋅

dot+bos

d = T

𝛼

What are possible mechanisms?

Ex1:[$,B,A,A,D,E] -> [-,1,2,2,1,1]

same

different

With BOS
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$ + ⋅,⋅

dot+bos

d = T

𝛼

What are possible mechanisms?

Ex1:[$,B,A,A,D,E] -> [-,1,2,2,1,1]

same

different

With BOS
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hidden layer size p

100%

>99%

T=32, L=10

Proposition (Relation-based Counting with BOS token). 
For dot+bos+sftm and given L ≥ 2, there each exists a configuration of weights that solves 
the histogram task at 100% accuracy, given that d ≥ T >2 and p=1. 

d = T
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hidden layer size p

100%

>99%

T=32, L=10

Proposition (Relation-based Counting with BOS token). 
For dot+bos+sftm and given L ≥ 2, there each exists a configuration of weights that solves 
the histogram task at 100% accuracy, given that d ≥ T >2 and p=1. 

d = T

d < T

Proposition (Robustness via softmax error-reduction). 
For dot+bos+sftm  and given T,L > 2, there exist weight configurations that solve the 
histogram task with d ≥ ⌈log2(T+1)⌉+2. 
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Input       -> Output
Ex1:[B,A,A,D,E] -> [1,2,2,1,1]
Ex2:[A,C,C,A,A] -> [3,2,2,3,3]
Ex3:[C,C,C,C,D] -> [4,4,4,4,1]

Histogram task : for each token, output the number of identical tokens in the sequence

{A,B,C,D,E} – set of tokens
𝐿  –  sequence length
𝑇   –  alphabet size

(How) Can we solve the task with a one layer transformer? yes

[Weiss et al ‘21]

ok
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Input       -> Output
Ex1:[B,A,A,D,E] -> [1,2,2,1,1]
Ex2:[A,C,C,A,A] -> [3,2,2,3,3]
Ex3:[C,C,C,C,D] -> [4,4,4,4,1]

Histogram task : for each token, output the number of identical tokens in the sequence

{A,B,C,D,E} – set of tokens
𝐿  –  sequence length
𝑇   –  alphabet size

(How) Can we solve the task with a one layer transformer?

Dot-product? Linear? State Space? Scratchpad? Chain-of-Thought? Heads? 
Hidden neurons? Activation function? Prompting?

→ Goal: Mechanistic insights into selection and measurements in different 
architectures.

[Weiss et al ‘21]

yes/no

yes

ok
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In which regimes can we learn perfect solutions? 
attention, T, L, d, p
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(+sftm) 

T=32, L=10

d, p
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How do the models solve the tasks? 
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Relation-based counting: 
- 𝐴 is for comparing + recording counting “anchor”
- f() is for reading counting subspace magnitude
- p=1 is enough
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Relation-based counting: 
- 𝐴 is for comparing + recording counting “anchor”
- f() is for reading counting subspace magnitude
- p=1 is enough

Inventory-based counting: 
- 𝐴 is for aggregating
- f() is for reading and thresholding token magnitude
- p=T is enough
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d < T

- discrete classes: small interclass-overlaps 𝜖 are tolerable, i.e. want low mutual coherence

- dot vs. linear: 𝜖 = 𝑒𝑡 , 𝑒𝑠  contribution of irrelevant terms can be smaller than contribution 𝜖 =
1

𝐿

- softmax : 𝜖 = f( 𝑒𝑡 , 𝑒𝑠 ) can nonlinearly decrease error further, dependent on temperature in sftm 
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Dot-product? Linear? State Space? Scratchpad? Chain-of-Thought? Heads? 
Hidden neurons? Activation function? Prompting?

→ Goal: Mechanistic insights into selection and measurements in different 
architectures.
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Input       -> Output
Ex1:[B,A,A,D,E] -> [1,2,2,1,1]
Ex2:[A,C,C,A,A] -> [3,2,2,3,3]
Ex3:[C,C,C,C,D] -> [4,4,4,4,1]

Histogram task : for each token, output the number of identical tokens in the sequence

{A,B,C,D,E} – set of tokens
𝐿  –  sequence length
𝑇   –  alphabet size

(How) Can we solve the task with a one layer transformer?

[Weiss et al ‘21]

yes

ok
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Input       -> Output
Ex1:[B,A,A,D,E] -> [1,2,2,1,1]
Ex2:[A,C,C,A,A] -> [3,2,2,3,3]
Ex3:[C,C,C,C,D] -> [4,4,4,4,1]

Histogram task : for each token, output the number of identical tokens in the sequence

{A,B,C,D,E} – set of tokens
𝐿  –  sequence length
𝑇   –  alphabet size

(How) Can we solve the task with a one layer transformer?

[Weiss et al ‘21]
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Two attention blocks behave similarly to one.



Recap Part 2:

• Relation vs. inventory-based counting 

• Normalization prevents information extraction

• Discrete tasks give opportunities for robustness

• Softmax helps non-linear disentanglement, but is limited by precision
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Recap Part 2:

• Relation vs. inventory-based counting 

• Normalization prevents information extraction

• Discrete tasks give opportunities for robustness

• Softmax helps non-linear disentanglement, but is limited by precision

Questions:

• Same mechanisms in parallel? 

• Competing mechanisms? Competing tasks?

114
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LLMs exhibit as many failure modes as capabilities.
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• Model capabilities can be emergent in sample 
complexity, in the sense of phase transitions

• Softmax + BOS can influence of the failure or 
success of counting in unintuitive ways



• Model capabilities can be emergent in sample 
complexity, in the sense of phase transitions

• Softmax + BOS can influence of the failure or 
success of counting in unintuitive ways

LLMs exhibit as many failure modes as capabilities.

2402.03902 2407.11542

Lenka ZdeborováFlorent KrzakalaLuca BiggioHugo Cui
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L=30
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