

Phase transitions between mechanisms in small models of transformers

A sample complexity and an architectural perspective

Luca Biggio

Florent Krzakala

Lenka Zdeborová

Freya Behrens, **SPOC** group, EPFL Cargèse 15.08.2025

Three months after November is [prompt]

Three months after November is [prompt]

99 % accuracy Llama 3 8B

Three months after November is [prompt] 99 % accuracy Llama 38B

(3 + 11) % 12 = [prompt]

```
Three months after November is [prompt] 99% accuracy Llama 38B

(3 + 11) % 12 = [prompt] ~8% accuracy
```


Scaling Laws for Neural Language Models [Kaplan et al '22]

Model Scale

Emergent Abilities of Large Language Models [Wei et al '22]

How do they fail? (When do their capabilities emerge?)

How do they fail? (When do their capabilities emerge?)

- Architecture: Capacity too small?
- Training: Memorizing the data instead of generalizing?
- Data: Too few samples available to generalize?

How do they fail? (When do their capabilities emerge?)

- Architecture: Capacity too small?
- Training: Memorizing the data instead of generalizing?
- Data: Too few samples available to generalize?

What is the performance of the learned model?

How is the performance influenced by external factors?

Debug: Inspect and understand model internals

Which features or mechanisms did the model learn?

Debug: Inspect and understand model internals

Which features or mechanisms did the model learn?

Examples:

[Bricken et al '23] [Mik

[Miklov et al '15]

[Wang et al '22]

[Nitakin et al '24]

To fix pre-training: How does this depend on external factors?

To fix pre-training: How does this depend on external factors?

Part 1: A Phase Transition Between Semantic and Positional Learning

arXiv:2402.03902 – Hugo Cui, Freya Behrens, Florent Krzakala, Lenka Zdeborová

How is the learned algorithm determined by the sample complexity? Do different algorithms emerge spontaneously?

Part 2: The Interplay between Attention and Feed-Forward Layers arXiv:2407.11542 – Freya Behrens, Luca Biggio, Lenka Zdeborová

How is the learned algorithm determined by architectural choices? Which functions are executed by which parts?

Part 1: A Phase Transition Between Semantic and Positional Learning

arXiv:2402.03902 – Hugo Cui, Freya Behrens, Florent Krzakala, Lenka Zdeborová

How is the learned algorithm determined by the sample complexity? Do different algorithms emerge spontaneously?

Part 2: The Interplay between Attention and Feed-Forward Layers arXiv:2407.11542 – Freya Behrens, Luca Biggio, Lenka Zdeborová

How is the learned algorithm determined by architectural choices? Which functions are executed by which parts?

Algorithms use the information encoded in a sentence

We analyze a phase transition between positional and semantic meaning

Algorithms use the information encoded in a sentence

We analyze a phase transition between positional and semantic meaning

In the **meaning** of the tokens (semantics)

We sanitize a face ambition between rational and acrylic baking

Algorithms use the information encoded in a sentence

We analyze a phase transition between positional and semantic meaning

In the **meaning** of the tokens (semantics)

We sanitize a face ambition between rational and acrylic baking

And their **ordering** in the sentence (positions)

A between a phase semantic learning and positional analyze transition

Input sentence

(embedded)

$$x \in \mathbb{R}^{L \times d}$$

Attention matrix:

mixes tokens together with a matrix

Input sentence

(embedded)

22

Context vector:

fed to a feed-forward architecture for further feature extraction

Attention matrix:

mixes tokens together with a matrix

$$S(x) \in \mathbb{R}^{L \times L}$$

(embedded)

$$x \in \mathbb{R}^{L \times d}$$

$$S(x)_{ij} = S(x_i, x_j, \mathbf{i}, j)$$

$$S(x)_{ij} = S(x_i, x_j, i, j)$$

$$S(x)_{ij} = S(x_i, x_j, i, j)$$

Purely semantic attention mechanism

$$S(x)_{ij} = S(x_i, x_j, i, j)$$

$$S(x)_{ij} = S(x_i, x_j, i, j)$$

Purely semantic attention mechanism

$$S(x)_{ij} = S(x_i, x_j, i, j)$$

Purely positional attention mechanism

$$S(x)_{ij} = S(x_i, x_j, i, j)$$

$$S(x)_{ij} = S(x_i, x_j, i, j)$$

Purely semantic attention mechanism

$$S(x)_{ij} = S(x_i, x_j, i, j)$$

Purely positional attention mechanism

When does attention learn to implement positional/semantic mechanisms?

Histogram task: for each token, output the number of identical tokens in the sequence

input
$$x = (a, b, b, c, c, a, c, c, b)$$

Histogram task: for each token, output the number of identical tokens in the sequence

input
$$x = (a, b, b, c, c, a, c, c, b)$$

target
$$y = (2, 3, 3, 4, 4, 2, 4, 4, 3)$$

Histogram task: for each token, output the number of identical tokens in the sequence

input
$$x = (a, b, b, c, c, a, c, c, b)$$

target
$$y = (2, 3, 3, 4, 4, 2, 4, 4, 3)$$

With a 1-layer transformer, we can reach two (almost) zero-gradient configurations with different behaviors.

1 0.0

A solvable model

A solvable model

Goal:

For a given task for a given architecture characterize the different minima in an empirical loss landscape as the sample complexity changes.

A phase transition?

A solvable model

Goal:

For a given task for a given architecture characterize the different minima in an empirical loss landscape as the sample complexity changes.

A phase transition?

(static!)

Context vector:

fed to a feed-forward architecture for further feature extraction

Attention matrix:

mixes tokens together with a matrix

$$S(x) \in \mathbb{R}^{L \times L}$$

Input sentence

(embedded)

$$x \in \mathbb{R}^{L \times d}$$

Data model

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_L \end{pmatrix} \in \mathbb{R}^{L \times d} \qquad \text{With the ℓ-th token} \qquad x_\ell \sim \mathcal{N}(0, \Sigma_\ell) \in \mathbb{R}^d$$

$$x_{\ell} \sim \mathcal{N}(0, \Sigma_{\ell}) \in \mathbb{R}^d$$

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_L \end{pmatrix} \in \mathbb{R}^{L \times d}$$

With the
$$\ell$$
-th token $x_{\ell} \sim \mathcal{N}(0, \Sigma_{\ell}) \in \mathbb{R}^d$

$$y(x) = \left[(\mathbf{1} - \boldsymbol{\omega}) \operatorname{softmax} \left(\frac{x \, Q_* \, Q_*^\mathsf{T} \, x^\mathsf{T}}{d} \right) + \boldsymbol{\omega} A \right] \cdot x$$
Target attention

with $A \in \mathbb{R}^{L \times L}$, $Q_* \in \mathbb{R}^d$

Data model

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_L \end{pmatrix} \in \mathbb{R}^{L \times d}$$

With the
$$\ell$$
-th token $x_{\ell} \sim \mathcal{N}(0, \Sigma_{\ell}) \in \mathbb{R}^d$

Target

$$y(x) = \left[(\mathbf{1} - \boldsymbol{\omega}) \operatorname{softmax} \left(\frac{x \, Q_* \, Q_*^{\mathsf{T}} x^{\mathsf{T}}}{d} \right) + \boldsymbol{\omega} A \right] \cdot x$$
Target attention

with $A \in \mathbb{R}^{L \times L}$, $Q_* \in \mathbb{R}^d$

- $\omega = 0$ Target attention is purely *semantic*
- Target attention is purely *positional* $\omega = 1$

Student

$$f_Q(x) = \operatorname{softmax}\left(\frac{(x+p)QQ^{\top}(x+p)^{\top}}{d}\right) \cdot x$$
 , $Q \in \mathbb{R}^d$

 $p \in \mathbb{R}^{L \times d}$ are positional encodings. In the following for L=2, $p=\begin{pmatrix} \mu \\ -\mu \end{pmatrix}$

$$f_Q(x) = \operatorname{softmax}\left(\frac{(x+p)QQ^{\top}(x+p)^{\top}}{d}\right) \cdot x$$
 , $Q \in \mathbb{R}$

 $p \in \mathbb{R}^{L \times d}$ are positional encodings. In the following for L=2, $p=\begin{pmatrix} \mu \\ -\mu \end{pmatrix}$

$$\hat{Q} = \operatorname{argmin}_{Q} \sum_{\mu=1}^{n} ||y(x^{\mu}) - f_{Q}(x^{\mu})||^{2} + \frac{\lambda}{2} ||Q||^{2}$$

$$f_Q(x) = \operatorname{softmax}\left(\frac{(x+p)QQ^{\top}(x+p)^{\top}}{d}\right) \cdot x$$
 , $Q \in \mathbb{R}^q$

 $p \in \mathbb{R}^{L \times d}$ are positional encodings. In the following for L=2, $p=\begin{pmatrix} \mu \\ -\mu \end{pmatrix}$

$$\widehat{Q} = \operatorname{argmin}_{Q} \sum_{\mu=1}^{n} \|y(x^{\mu}) - f_{Q}(x^{\mu})\|^{2} + \frac{\lambda}{2} \|Q\|^{2}$$

Asymptotic limit:

$$d, n \to \infty$$
, $||p||, \alpha = n/d = \Theta_d(1)$

$$\boldsymbol{m} = \frac{\mu^{\mathsf{T}} Q}{\sqrt{d}}, \, \boldsymbol{\theta} = \frac{Q_*^{\mathsf{T}} Q}{d}$$

$$\mathbf{m} = \frac{\mu^{\mathsf{T}} Q}{\sqrt{d}}, \, \boldsymbol{\theta} = \frac{Q_*^{\mathsf{T}} Q}{d}$$

We find **two** minima:

•
$$m > 0$$
, $\theta = 0$

the elements are partly independent of x: positional mechanism

$$\mathbf{m} = \frac{\mu^{\mathsf{T}} Q}{\sqrt{d}}, \, \boldsymbol{\theta} = \frac{Q_*^{\mathsf{T}} Q}{d}$$

We find **two** minima:

•
$$m > 0$$
, $\theta = 0$

the elements are partly independent of x: positional mechanism

•
$$\mathbf{m} = 0, \theta > 0$$

the elements depend on x: semantic mechanism

$$\mathbf{m} = \frac{\mu^{\mathsf{T}} Q}{\sqrt{d}}, \, \boldsymbol{\theta} = \frac{Q_*^{\mathsf{T}} Q}{d}$$

We find **two** minima:

•
$$m > 0$$
, $\theta = 0$

the elements are partly independent of x: positional mechanism

the elements depend on x: semantic mechanism

- Positional minimum
- Semantic minimum

Dot-product attention implements a positional mechanism to approximate the target

... then learns a semantic mechanism with more data, leading to better generalization.

Recap:

- Toy attention model which charachterizes a discrete phase transition between two algorithms (in terms of sample complexity)
- "Emergence" may be discrete in the sense of a first order phase transition

Recap:

- Toy attention model which charachterizes a discrete phase transition between two algorithms (in terms of sample complexity)
- "Emergence" may be discrete in the sense of a first order phase transition

Questions:

- Dynamics Does gradient-based training reliably find the minima?
- Architecture Multiple layers?
- Data More structured input data? Real tasks?

Recap:

- Toy attention model which charachterizes a discrete phase transition between two algorithms (in terms of sample complexity)
- "Emergence" may be discrete in the sense of a first order phase transition

Questions:

- Dynamics Does gradient-based training reliably find the minima?
- Architecture Multiple layers?
- Data More structured input data? Real tasks?

multiple layers
[Troiani et al 25]
arXiv:2502.00901

dynamics
[Arnaboldi et al 25]
arXiv:2506.02651

Part 1: A Phase Transition Between Semantic and Positional Learning

arXiv:2402.03902 – Hugo Cui, Freya Behrens, Florent Krzakala, Lenka Zdeborová

How is the learned algorithm determined by the sample complexity? Do different algorithms emerge spontaneously?

Part 2: The Interplay between Attention and Feed-Forward Layers arXiv:2407.11542 – Freya Behrens, Luca Biggio, Lenka Zdeborová

How is the learned algorithm determined by architectural choices? Which functions are executed by which parts?

Histogram task: for each token, output the number of identical tokens in the sequence

[Weiss et al '21]

```
Input -> Output

Ex1:[B,A,A,D,E] -> [1,2,2,1,1]

Ex2:[A,C,C,A,A] -> [3,2,2,3,3]

Ex3:[C,C,C,C,D] -> [ , , , , ]
```

Histogram task: for each token, output the number of identical tokens in the sequence [Weiss et al '21]

```
Input -> Output

Ex1:[B,A,A,D,E] -> [1,2,2,1,1]

Ex2:[A,C,C,A,A] -> [3,2,2,3,3]

Ex3:[C,C,C,C,D] -> [4,4,4,4,1]
```

Histogram task: for each token, output the number of identical tokens in the sequence

[Weiss et al '21]

Why a counting task?

Why a counting task?

- Counting: localization and subsequent measurement
- Language models are bad/brittle at counting [Ouellette '24]
- Contribute to understanding a zoology of algorithmic tasks in networks

Histogram task: for each token, output the number of identical tokens in the sequence

[Weiss et al '21]

(How) Can we solve the task with a one layer transformer?

1 0.0

 $ar{\mathbf{x}} \in \mathbb{R}^{L imes d}$

 $ar{\mathbf{x}} \in \mathbb{R}^{L imes d}$

$$\bar{\mathbf{x}} \in \mathbb{R}^{L \times d}$$
 $\bar{x}'_{\ell} = \bar{x}_{\ell} + [\mathbf{A}(\bar{\mathbf{x}})\bar{\mathbf{x}}]_{\ell}$ $a_{ij} = \frac{1}{\sqrt{d}} \langle x_i W_Q, x_j W_K \rangle$

$$\bar{\mathbf{x}} \in \mathbb{R}^{L \times d}$$
 $\bar{x}'_{\ell} = \bar{x}_{\ell} + [\mathbf{A}(\bar{\mathbf{x}})\bar{\mathbf{x}}]_{\ell}$ $f(\bar{x}'_{\ell}) = \text{ReLU}(\bar{x}'_{\ell}W_1 + b_1)W_2 + b_2$
$$a_{ij} = \frac{1}{\sqrt{d}} \langle x_i W_Q, x_j W_K \rangle$$

$$\bar{\mathbf{x}} \in \mathbb{R}^{L \times d}$$
 $\bar{x}'_{\ell} = \bar{x}_{\ell} + [\mathbf{A}(\bar{\mathbf{x}})\bar{\mathbf{x}}]_{\ell}$ $f(\bar{x}'_{\ell}) = \text{ReLU}(\bar{x}'_{\ell}W_1 + b_1)W_2 + b_2$
$$a_{ij} = \frac{1}{\sqrt{d}} \langle x_i W_Q, x_j W_K \rangle$$

We don't want to deal with positional encodings

Embedding, token and feature mixing are learned - online

In which regimes can we learn perfect solutions? d, p

100%

>99%

>99%

What are possible mechanisms?

$$Ex1:[\$,B,A,A,D,E] \rightarrow [-,1,2,2,1,1]$$

 α

What are possible mechanisms?

$$Ex1:[\$,B,A,A,D,E] \rightarrow [-,1,2,2,1,1]$$

 α

What are possible mechanisms?

$$Ex1:[\$,B,A,A,D,E] \rightarrow [-,1,2,2,1,1]$$

 α

What are possible mechanisms?

$$Ex1:[\$,B,A,A,D,E] \rightarrow [-,1,2,2,1,1]$$

T=32, L=10

★ 100%

>99%

Proposition (Relation-based Counting with BOS token).

For <u>dot+bos</u>+sftm and given $L \ge 2$, there each exists a configuration of weights that solves the histogram task at 100% accuracy, given that $d \ge T > 2$ and **p=1**.

>99%

Proposition (Relation-based Counting with BOS token).

For <u>dot+bos</u>+sftm and given $L \ge 2$, there each exists a configuration of weights that solves the histogram task at 100% accuracy, given that $d \ge T > 2$ and p=1.

Proposition (Robustness via softmax error-reduction).

For dot+bos+<u>sftm</u> and given T,L > 2, there exist weight configurations that solve the histogram task with $d \ge \lceil \log_2(T+1) \rceil + 2$.

Histogram task: for each token, output the number of identical tokens in the sequence

[Weiss et al '21]

ok

(How) Can we solve the task with a one layer transformer? yes

Histogram task: for each token, output the number of identical tokens in the sequence

[Weiss et al '21]

ok

(How) Can we solve the task with a one layer transformer? yes

Dot-product? Linear? State Space? Scratchpad? Chain-of-Thought? Heads? Hidden neurons? Activation function? Prompting?

Several configurations : L, T, (bos), (+sftm), d, p

Several configurations : L, T, (bos), (+sftm), d, p

Token Mixing :
$$a_{ij} = \frac{1}{\sqrt{d}} \langle x_i W_Q, x_j W_K \rangle$$
 or
$$a_{ij} = c_{ij}$$

Several configurations : L, T, (bos), (+sftm), d, p

Token Mixing :
$$(\text{dot}) \qquad a_{ij} = \frac{1}{\sqrt{d}} \langle x_i W_Q, x_j W_K \rangle$$
 or
$$(\text{linear}) \qquad a_{ij} = c_{ij}$$

Embedding, token and feature mixing are learned

In which regimes can we learn perfect solutions? attention, T, L, d, p

embedding dimension d

hidden layer size p

>99%

dimension d

embedding

86

hidden layer size p

dimension d

embedding

hidden layer size p

How do the models solve the tasks?

Relation-based counting:

- A is for comparing + recording counting "anchor"
- f() is for reading counting subspace magnitude
- p=1 is enough

Relation-based counting:

- A is for comparing + recording counting "anchor"
- f() is for reading counting subspace magnitude
- p=1 is enough

hidden layer size p

Relation-based counting:

- *A* is for comparing + recording counting "anchor"
- f() is for reading counting subspace magnitude
- p=1 is enough

Relation-based counting:

- A is for comparing + recording counting "anchor"
- f() is for reading counting subspace magnitude
- p=1 is enough

Inventory-based counting:

- A is for aggregating
- f() is for reading and thresholding token magnitude
- p=T is enough

Relation-based counting:

- A is for comparing + recording counting "anchor"
- f() is for reading counting subspace magnitude
- p=1 is enough

Inventory-based counting:

- A is for aggregating
- f() is for reading and thresholding token magnitude
- p=T is enough

hidden layer size p

hidden layer size p

- discrete classes: small interclass-overlaps ϵ are tolerable, i.e. want low mutual coherence

- discrete classes: small interclass-overlaps ϵ are tolerable, i.e. want low mutual coherence
- dot vs. linear: $\epsilon = \langle e_t, e_s \rangle$ contribution of irrelevant terms can be smaller than contribution $\epsilon = \frac{1}{L}$

- discrete classes: small interclass-overlaps ϵ are tolerable, i.e. want low mutual coherence
- dot vs. linear: $\epsilon=\langle e_t,e_s \rangle$ contribution of irrelevant terms can be smaller than contribution $\epsilon=rac{1}{L}$
- softmax : $\epsilon = \text{sftm}(\langle e_t, e_s \rangle; \tau)$ can nonlinearly decrease error further, dependent on temperature in sftm

hidden layer size p

Inventory-based

hidden layer size p

Mutual Coherence

Softmax Robustness

hidden layer size p

Mutual Coherence

Softmax Robustness

hidden layer size p

Mutual Coherence

Softmax Robustness

Histogram task: for each token, output the number of identical tokens in the sequence

[Weiss et al '21]

ok

(How) Can we solve the task with a one layer transformer? yes

Dot-product? Linear? State Space? Scratchpad? Chain-of-Thought? Heads? Hidden neurons? Activation function? Prompting?

Histogram task: for each token, output the number of identical tokens in the sequence

[Weiss et al '21]

ok

(How) Can we solve the task with a one layer transformer? yes

Dot-product? Linear? State Space? Scratchpad? Chain-of-Thought? Heads? yes/no Hidden neurons? Activation function? Prompting?

Two attention blocks behave similarly to one.

Recap Part 2:

- Relation vs. inventory-based counting
- Normalization prevents information extraction
- Discrete tasks give opportunities for robustness
- Softmax helps non-linear disentanglement, but is limited by precision

Recap Part 2:

- Relation vs. inventory-based counting
- Normalization prevents information extraction
- Discrete tasks give opportunities for robustness
- Softmax helps non-linear disentanglement, but is limited by precision

Questions:

- Same mechanisms in parallel?
- Competing mechanisms? Competing tasks?

LLMs exhibit as many failure modes as capabilities.

2402.03902

LLMs exhibit as many failure modes as capabilities.

2407.11542 dot+bos

 $+ \langle \cdot, \cdot \rangle$

2402.03902

LLMs exhibit as many failure modes as capabilities.

2407.11542 dot+bos

 $+ \langle \cdot, \cdot \rangle$

- Model capabilities can be emergent in sample complexity, in the sense of phase transitions

2402.03902

LLMs exhibit as many failure modes as capabilities.

2407.11542 dot+bos

 $+ \langle \cdot, \cdot \rangle$

- Model capabilities can be emergent in sample complexity, in the sense of phase transitions
- Softmax + BOS can influence of the failure or success of counting in unintuitive ways

Luca Biggio

Florent Krzakala

Lenka Zdeborová

L=30

