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Three months after November is [prompt]

(3 + 11) % 12 = [prompt]

99 % accuracy Llama 3 8B

~8 % accuracy

Not All Language Model Features Are Linear [Engels et al 2024]
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LLMs exhibit as many failure modes as capabilities.

How do they fail? (When do their capabilities emerge?)

* Architecture: Capacity too small?

',‘ * Training: Memorizing the data instead of generalizing?
ay

* Data: Too few samples available to generalize?

What is the performance of the learned model?

Q

How is the performance influenced by external factors?
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LLMs exhibit as many failure modes as capabilities.

AE

Examples:

. Q Debug: Inspect and understand model internals

Which features or mechanisms did the model learn?
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LLMs exhibit as many failure modes as capabilities.

_o*

AE

Examples:

. Q To fix pre-training: How does this depend on external factors?

Partial sharing (P=4) Maximal sharing (P=M?)

b
1

—
1

Generalisation error

0 2 4
Sample complexity a = n/d

[Troiani et al “24] [Saxe et al 22] [Nichani et al 24]
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Algorithms use the information encoded in a sentence ....

We analyze a phase transition between positional and semantic meaning
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Algorithms use the information encoded in a sentence ....

We analyze a phase transition between positional and semantic meaning

In the meaning of the tokens (semantics)

We sanitize a face ambition between rational and acrylic baking

And their ordering in the sentence (positions)

A between a phase semantic learning and positional analyze transition
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Attention matrix:
mixes tokens together with a
matrix
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Context vector:
fed to a feed-forward architecture
for further feature extraction
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S5x)ij = S(xp x5, 1, ))

Dependence on the positions [,j and the tokens, x;x;
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S(x)ij =S, x;,1,))

S(x)ij =S50, x50 )

Dependence on the positions [,j and the tokens, x;x;

Purely semantic attention mechanism
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S5x)ij = S(xp x5, 1, ))

S(x)ij =S50, x50 )

S5(x)i; = S( L)

Dependence on the positions [,j and the tokens, x;x;

Purely semantic attention mechanism

Purely positional attention mechanism
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. Em = S(x)ij = S(xi, Xj, i,j) Dependence on the positions [, and the tokens, x; x;
|
S(x); j = S(xi) Xj ) Purely semantic attention mechanism
S (x)l j = S ( L, ] ) Purely positional attention mechanism

When does attention learn to implement positional/semantic mechanisms?

27



Histogram task : for each token, output the
number of identical tokens in the sequence

input x=(a,b,b,c,c,a,c,c,b)
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Histogram task : for each token, output the
number of identical tokens in the sequence

input x=(a,b,b,c,c,a,c,c,b)

target y=1(2,3,3,4,4,2,44,3)
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semantic

2 '7‘4%Sitional

Histogram task : for each token, output the
number of identical tokens in the sequence

input x=(a,b,b,c,c,a,c,c,b)

target y=1(2,3,3,4,4,2,44,3)

With a 1-layer transformer, we can reach
two (almost) zero-gradient configurations
with different behaviors.
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A phase transition?



A solvable model

Goal:

For a given task

for a given architecture
characterize the different minima
in an empirical loss landscape

as the sample complexity changes.

A phase transition?

(static!)



Context vector:
fed to a feed-forward architecture
for further feature extraction
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Data model

With the £-th token

x; ~ N(0,Z,) € R?

37



Data model x = X2 e RLxd With the ¢-th token x; ~ N(0,Z,) € R?
XL
T, T ; LXL d
farget y(x) = [(1 — w) softmax (x Q*Sl* = ) + wA] ‘|x with 4 € R™™, Q. € R

Target attention



Data model

Target

x = X2 e RLxd With the £-th token

y(x) = [(1 — w) softmax (%) + wA] ||x

Target attention

w=0 Target attention is purely semantic

w=1 Target attention is purely positional

x; ~ N(0,Z,) € R?

with 4 € RXE 0, € R?
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Student

fo(x) = softmax(

p €

]RLXd

d

are positional encodings. In the followingfor L =2, p = (
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)
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Student

ERM

(x +p)QQdT (x +p)T) N 0eRe
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Student

ERM

Asymptotic limit:

x + Tx+p)T
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We find two minima:

m>0,0=0

the elements are partly independent of x :

positional mechanism

m=0,06>0

the elements depend on x :
semantic mechanism
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S

* Toy attention model which charachterizes a discrete phase transition
between two algorithms (in terms of sample complexity)

* “Emergence” may be discrete in the sense of a first order phase transition
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S

* Toy attention model which charachterizes a discrete phase transition
between two algorithms (in terms of sample complexity)

* “Emergence” may be discrete in the sense of a first order phase transition

Questions :
 Dynamics — Does gradient-based training reliably find the minima?
e Architecture — Multiple layers?

e Data — More structured input data? Real tasks?

multiple layers dynamics
[Troiani et al 25] [Arnaboldi et al 25]

arXiv:2502.00901 arXiv:2506.02651
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How is the learned algorithm determined by architectural choices?
Which functions are executed by which parts?



Histogram task : for each token, output the number of identical tokens in the sequence

[Weiss et al ‘21]

Input -> Output
EXl:[ S ERE ERS ] -2 [1)2)2)1J1]
EXZ:[ I RN Ry ] -2 [3)2)213)3]
EX3:[ 33y ] -2 [ SIS R I ]
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Histogram task : for each token, output the number of identical tokens in the sequence

[Weiss et al 21]

Input -> Output
EXl:[ S ERE ERS ] -2 [1)2J2)1J1]
EXZ:[ I RN Ry ] -2 [3)2)2)3)3]
EX3:[ 3y ] -2 [414)4:4)1]
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Histogram task : for each token, output the number of identical tokens in the sequence

[Weiss et al 21]

Input -> Output
Ex1:[B,A,A,D,E] -> [1,2,2,1,1] {A,B,,D,E} —setof tokens
Ex2:[A,C,C,AA] -> [3,2,2,3,3] L — sequence length
Ex3:[C,C,C,C,D] -> [4,4,4,4,1] T — alphabet size
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Why a counting task?
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Why a counting task?

e Counting: localization and subsequent measurement
* Language models are bad/brittle at counting [Ouellette ‘24]

e Contribute to understanding a zoology of algorithmic tasks in networks



Histogram task : for each token, output the number of identical tokens in the sequence

[Weiss et al 21]

Input -> Output
Ex1:[B,A,A,D,E] -> [1,2,2,1,1] {A,B,,D,E} —setof tokens
Ex2:[A,C,C,AA] -> [3,2,2,3,3] L — sequence length
Ex3:[C,C,C,C,D] -> [4,4,4,4,1] T — alphabet size

(How) Can we solve the task with a one layer transformer?
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Token Mixing
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Feature Mixing

Token Mixing
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Feature Mixing

i
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Token Mixing
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We don’t want to deal with positional encodings



Token Mixing Feature Mixing

$ BOS |
. 00o00| 3 x
. 00o0o00| S s
X3 HEEEIE - o
2 DDDDD%?—
d

x € Rb>d Ty = Ty + [A(X)X]e f(z)) = ReLU(Z,W1 + by ) W5 + by

1
aij = 7= {xiWo, x;Wg)

Embedding, token and
feature mixing are learned

We don’t want to deal with positional encodings _online
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In which regimes can we learn perfect solutions?
d, p



with softmax

embedding dimension d

dot+bos

$ + (.f)
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hidden layer size p

Y 100%
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with softmax

embedding dimension d

dot+bos

$ + (.f)

10! 102

hidden layer size p

Y 100%
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What are possible mechanisms? dot+bos ‘ :

$_|_ .
Ex1:[$,B,A,A,D,E] -> [-,1,2,2,1,1] () 4= T
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density

What are possible mechanisms? dot+bos ‘ :

$_|_ .
Ex1:[$,B,A,A,D,E] -> [-,1,2,2,1,1] () d =T

token embeddings
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What are possible mechanisms? dot+bos

_|_ o
Ex1:[$,B,A,A,D,E] -> [-,1,2,2,1,1] $+ ()
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What are possible mechanisms? dot+bos

4_ o
Ex1:[$,B,A,A,D,E] -> [-,1,2,2,1,1] $+ ()
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dot+bos T=32, L=10
$+ () % 100%
‘g Y ' ® >99%

w k

with softmax

embedding dimension d

hidden layer size p

Proposition (Relation-based Counting with BOS token).
For dot+bos+sftm and given L > 2, there each exists a configuration of weights that solves
the histogram task at 100% accuracy, given that d > T >2 and p=1.




dot+bos T=32, L=10

* % = = % &

TEEIERE:; ‘
ok oW o o W
+* +*

with softmax

embedding dimension d

hidden layer size p

$+ () Yy 100%

>99%

Proposition (Relation-based Counting with BOS token).
For dot+bos+sftm and given L > 2, there each exists a configuration of weights that solves
the histogram task at 100% accuracy, given that d > T >2 and p=1.

Proposition (Robustness via softmax error-reduction).
For dot+bos+sftm and given T,L > 2, there exist weight configurations that solve the
histogram task with d > [log,(T+1)]+2.




Histogram task : for each token, output the number of identical tokens in the sequence

[Weiss et al ‘21]

Input -> Output
Ex1:[B,A,A,D,E] -> [1,2,2,1,1] {A,B,,D,E} —setof tokens
Ex2:[A,C,C,AA] -> [3,2,2,3,3] L — sequence length
Ex3:[C,C,C,C,D] -> [4,4,4,4,1] T — alphabet size

ok
(How) Can we solve the task with a one layer transformer? yes



Histogram task : for each token, output the number of identical tokens in the sequence

[Weiss et al ‘21]

Input -> Output
Ex1:[B,A,A,D,E] -> [1,2,2,1,1] {A,B,,D,E} —setof tokens
Ex2:[A,C,C,A,A] -> [3,2,2,3,3] L — sequence length
Ex3:[C,C,C,,D] -> [4,4,4,4,1] T — alphabet size

ok
(How) Can we solve the task with a one layer transformer? yes

Dot-product? Linear? Scratchpad?
Hidden neurons? Activation function?
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Token Mixing
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Feature Mixing

Token Mixing
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BOS

Token Mixing
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Several configurations
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Embedding, token and
feature mixing are learned
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In which regimes can we learn perfect solutions?
attention, T, L, d, p
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embedding dimension d

with softmax

no softmax

T=32, L=10

dot+bos dot linear 1*’ 100%
$+ ()
® >99%

10! 10

hidden layer size p
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embedding dimension d

with softmax

no softmax

dot+bos

$ + ('f)
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dot
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hidden layer size p

linear
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T

T=32, L=10
Y 100%

® >99%

1) (-,-) for comparison?
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embedding dimension d

with softmax

no softmax

dot+bos

$ + ('f)

dot

10! 10

hidden layer size p

linear

T=32, L=10

Y 100%
® >99%

1) (-,-) for comparison?

2) (-,-) for robustness?
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embedding dimension d

with softmax

no softmax

dot+bos

$ + (.f)

T=32, L=10
dot linear

Y 100%
C
T ® >99%

1) (-,-) for comparison?

2) (-,-) for robustness?

3) Softmax helps?

10! 10

hidden layer size p
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How do the models solve the tasks?
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- () is for reading counting subspace magnitude
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- £() is for reading counting subspace magnitude
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with softmax

embedding dimension d

no softmax

T=32, L=10
dot linear

(.,.) C

1) (-,-) for comparison?
2) (-,-) for robustness?

3) Softmax helps?

10! 10

hidden layer size p
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with softmax

embedding dimension d

no softmax

dot

10! 10

hidden layer size p

linear

T=32, L=10

- 1)(-;) for comparison?

2) (-,-) for robustness?

3) Softmax helps?
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embedding dimension d

with softmax

no softmax

T=32, L=10
dot linear

() c

- 1)(-;) for comparison?
2) (-,-) for robustness?

3) Softmax helps?

10! 10

hidden layer size p
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-dot vs. linear: € = (e, e,) contribution of irrelevant terms can be smaller than contribution € = ”

- softmax : € = sftm({e;, e); T) can nonlinearly decrease error further, dependent on temperature in
sftm
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with softmax

embedding dimension d

no softmax

dot
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hidden layer
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size p

linear

T=32, L=10

- ) (-,-) for comparison?

2) (-,-) for robustness?

3) Softmax helps?
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embedding dimension d

T=32, L=10
dot linear
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with softmax

- 1)(-;) for comparison?

2) (-,-) for robustness?

no softmax

3) Softmax helps?

10! 10

hidden layer size p
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embedding dimension d

T=32, L=10
dot linear
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with softmax

. ) () for comparison?
E32) (-,) for robustness?
3) Softmax helps?

no softmax

10! 102

hidden layer size p
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embedding dimension d

T=32, L=10
dot linear
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with softmax

. ) () for comparison?
E32) (-,) for robustness?
) Softmax helps?

no softmax

10! 102

hidden layer size p
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Histogram task : for each token, output the number of identical tokens in the sequence

[Weiss et al ‘21]

Input -> Output
Ex1:[B,A,A,D,E] -> [1,2,2,1,1] {A,B,C,D,E} —setoftokens
Ex2:[A,C,C,A,A] -> [3,2,2,3,3] L — sequence length
Ex3:[C,C,C,C,D] -> [4,4,4,4,1] T — alphabet size

ok
(How) Can we solve the task with a one layer transformer? yes

Dot-product? Linear? Scratchpad?
Hidden neurons? Activation function?
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Histogram task : for each token, output the number of identical tokens in the sequence

[Weiss et al 21]

Input -> Output
Ex1:[B,A,A,D,E] -> [1,2,2,1,1] {A,B,,D,E} —setof tokens
Ex2:[A,C,C,A,A] -> [3,2,2,3,3] L — sequence length
Ex3:[C,C,C,,D] -> [4,4,4,4,1] T — alphabet size

ok
(How) Can we solve the task with a one layer transformer? yes

Dot-product? Linear? Scratchpad? yes/no
Hidden neurons? Activation function?
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with softmax

embedding dimension d

no softmax

Two attention blocks behave similarly to one.

[bos] [dot] flin]
dot-product attention & BOS token dot-product attention linear mixing
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hidden layer size p
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Relation vs. inventory-based counting
Normalization prevents information extraction
Discrete tasks give opportunities for robustness

Softmax helps non-linear disentanglement, but is limited by precision



Relation vs. inventory-based counting

Normalization prevents information extraction

Discrete tasks give opportunities for robustness

Softmax helps non-linear disentanglement, but is limited by precision

Questions:
 Same mechanisms in parallel?

e Competing mechanisms? Competing tasks?



LLMs exhibit as many failure modes as capabilities.
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LLMs exhibit as many failure modes as capabilities.
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O i0
2 LLMs exhibit as many failure modes as capabilities.
2402.03902 2407.11542
dot+bos
$+ (,)

=
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* Model capabilities can be emergent in sample
complexity, in the sense of phase transitions

e Softmax + BOS can influence of the failure or
success of counting in unintuitive ways

10! 4

with softmax
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Ok 10
k& LLMs exhibit as many failure modes as capabilities.
2402.03902 2407.11542
dot+bos
. F ¢+ Model capabilities can be emergent in sample w7
oo complexity, in the sense of phase transitions 5
* Softmax + BOS can influence of the failure or - s
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Sample complexity
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with softmax

embedding dimension d

no softmax

=30

[bos] [dot] llin]
dot-preduct attention & BOS token dot-product attention linear mixing
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