Sequential Dynamics in Ising Spin Glasses

Francisco Pernice (MIT)

Joint with

Yatin Dandi

David Gamarnik

Lenka Zdeborová

Outline

- 1. Numerical insights
- 2. Refresher on the equations, including randomized updates
- 3. Proof ideas behind new rigorous cavity argument

Numerical insights

- Equations can be written as sequence of explicit ODE
- Very tractable to solve numerically
- Lets one compute macroscopic observables efficiently with high accuracy: energy, overlap, etc

Numerics: energy

Time

Numerics: energy

• Convergence to equilibrium energy happens iff at high temperature

• Several positive temperatures overtake zero-temperature energy in this regime

Numerics: magnetization

- Initialize on $\sigma^0=1$ and measure the magnetization as function of time
- For a pass $t \in [N]$ and coordinate i = xN, the magnetization is

$$m(t,x) = \frac{1}{N} \sum_{j=1}^{i} \sigma_j^t + \frac{1}{N} \sum_{j=i+1}^{N} \sigma_j^{t-1}$$

$$= \frac{1}{N} \langle \sigma^{t,i}, \sigma^0 \rangle$$

$$\longrightarrow \int_0^x C_{0,t}(y) dy + \int_x^1 C_{0,t-1}(y) dy$$

Numerics: magnetization

