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THE SCALING HYPOTHESIS

Test Loss
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Smooth power laws: Performance has a power-law relationship with each of the three scale factors |

N, D, C when not bottlens -~ - “*- - -~

NN IVl RIS, R

SRURE, . U, U o R PR

(see Figure|1). We observ Convergence is inefficient: When working within a fixed compute budget C' but without any other restric-
must flatten out eventually tions on the model size NV or available data D, we attain optimal performance by training very large models

and stopping significantly short of convergence (see Figure|3). Maximally compute-efficient training would

therefore be far more sample efficient than one might expect based on training small models to convergence,
with data requirements growing very slowly as D ~ C°27 with training compute. (Section 6)

See also Hoffman et al. (Chinchilla), which has n o f%-°,
n =number of samples. f =number of flops




TALK PLAN

Part 1: The Power law Random features
model

Part 2: The role of the nonlinearity

Part 3: Scaling laws for the linear model

* In which we can see many different behaviors of SGD

Part 4: What can change a scaling law?




Suppose X is a latent data vector in R".

We access an embedding of X into R?, by
o(W'X) for W ~N(0,I, ® I;/d).

DESIGNING A The targets are comE)u’red in the
MODEL... latent space: 5‘(<X, ﬁ))

We fit the linear model (8, a(W " X)) with 1-
pass SGD, MSE loss.




Power law data-geometry

X ~ N(0,Z) with %;; = j=2¢ SOURCE

e Observable
* Real-world

Capacity

e Artificial

* Phenomenological Larger a, B = Lower complexity

Ren, Nichani, Wu, Lee ‘25 Arous, Erdogdu, Vural, Wu ‘25



CIFAR-10
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FINEWEB-EDU-(UNTRAINED-EMBEDDING LAYER)

Covariance Spectra - embedding

—e— Ensemble covariance
—e— Median token covariance
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FINEWEB-EDU-(TRAINED-EMBEDDING LAYER)

Covariance Spectra - embedding iz
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FINEWEB-EDU-(UNTRAINED-READOUT LAYER)

Covariance Spectra of the Final Embedding
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Part 1: The Power law Random features
model

Part 2: The role of the nonlinearity

Part 3: Scaling laws for the linear model

* In which we can see many different behaviors of SGD

Part 4: What can change a scaling law?




QUESTION

Suppose your data X € RY has power law covariance.

Capponetto & De Vito ‘05, 07 (and therein); Bach ’17; Bahri ‘21,

‘Zipf-law’ of word distribution (1920s-30s)

What is the distribution of (W "X) for a Gaussian matrix W?2



j-th eigenvalue

j<th eigenvalue

Combined Eigenvalue Spectra (including heavy-tailed), 2a = 1.33
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*g(x) = xP,p € N.
2a > 1.

*X is normally distributed with variances j 2% in RY with v > d.

(v = o is allowed).

‘Wis N(0,] ®I/d) € RE*V

The eigenvalues of

KW) =Ex(c(W'X) ® a(W'X))

satisfy for all 1 < j < ¢yd

5 (logp—lgj + 1) ) < L(KW)) < c, (

With probability tending to 1 as d — 0.

C_j are nonrandom constants depending on &, p.

log?~ (G + 1)
J

;




1. Reduce to dominant kernel terms

;gg g F_ID EC"A‘Z KW) =Ex(c(WTX) @ s(WTX))

2. Do head-tail decomposition
y®2 _ pe € Bartlett, Long, Lugosi, Tsigler ‘20

x = +T . )

Lin, Wu, Kakade, Bartlett, Lee '24
H€ keeps all directions larger than €
T€ 1 HE
4. Bound the tail in norm like
3. In the head, we can reverse 0(¢)

2
KW)y; ~ (W, Zx W) = (W22, 522w 2?)

WETHEWT > VHWTTW™/H

5. Spectrum matches that of
Then WETWT™ ~ [.d Z?Z up to multiplicative constants.



CONCLUSION

Spectrally, polynomial nonlinearity does very little.

Open Qs: so so many
Learning theory..
Non-polynomial..

Universality..



J-th eigenvalue

Monomial Functions

Eigenvalue Spectra: Gaussian data, 2a = 1.5
v=10000, d=10000, m=10000
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Power-law Slope

Power-law Slope

nit

SLOPE EVOLUTIONS ACROSS LAYERS (GPT2)

Evolution of Power-law Slopes Across Transformer Layers

After training

Evolution of Power-law Slopes Across Transformer Layers
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Part 1: The Power law Random features
model

Part 2: The role of the nonlinearity

Part 3: Scaling laws for the linear model

* In which we can see many different behaviors of SGD

Part 4: What can change a scaling law?




THE POWER LAW RANDOM FEATURES MODEL

min{R(6) = %IE (e, wTx) — (B.x))°].
W ~N(O, (I, ® Ig)/d).

X ~ N(0,%) with Zj; =j~2¢

Maloney, Roberts, Sully ‘22
Bahri et al. ‘21

Defillipis, Loureiro, Misiakiewicz ‘24

Parameters

Latent Dim. v

Embedding Dim. d

Data (‘Source’) Complexity. 1/a

Target (‘Capacity’) Complexity.

1/p

This work:
Paquette®2, Xiao, Pennington '24



How do the power law
exponents effect the

loss curves in the linear
model in one-pass SGD?




LOSS CURVES OF ONE-PASS GAUSSIAN SGD

1. Streaming SGD: For iid samples: 3 unssiqn SGD fOI’ LR SCIﬁSﬁeS’

Or+1 = Ok =YW T Xy 1({O, W T Xp41) — (B;Xk+1 l/)(k) — ]EX(R(@]())
2. Our main object of interest: lp (k) — F (k) + :]C lp (k)

(k) = Ex(R(Oy))

R(O) = %E[«@, WTX) — (8, X)) * F (k) is (approximately) the loss under

mean gradient descent

* K (k) is the risk curve of 1 unit of variance
of SGD noise

* K * Y is the convolution:

* K xp(k) = X Kk —r— Dip(r)
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. e VL FOR THE DETERMINISTIC EQUIVALENT:

N
e it

(k) = F(k) + (X =) (k).

Suppose Y is at most half the convergence threshold. “Kesten’s Lemma”
There is a constant C = C(a, B) so that for all k

F(k) + (K + F)(k) < w(k) < F(k) + C(K * F)(k).

Hence it suffices to understand the rates of decay of F, K.



F(k) =y Fo(k) + Fpp(k) + Fyc (k)
K (k) =y Kpp(k)
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EINIVERSAL
CALING REGIME

Compute optimal d*

argminy (g, d,v,«a, ,B)

d

d* <. /f enxd

Derived empirically for

language models in Hoffman
et al. ‘22 (Chinchilla)
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Part 1: The Powerlaw Random features model

TALK PLAN
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* Phenomenological model of scaling laws

Part 2: Theory for loss curves (Volterra equations, SDEs, and
more)

* Quadratic models

Part 3: Compute optimal scaling laws for streaming SGD on
random features

* In which we can see many different behaviors of SGD

Part 4: What can change a scaling law?




DOES THE MODEL MATTER FOR THE SCALING LAW?

Yes, but less than you might expect..

Transformers asymptotically outperform LSTMs 17
due to improved use of long contexts 16 - : :;/'Iami
—— amba
Test Loss 5.4 15 - —e— RWKV-4
45l o 14 —o— xLSTM[7:1]
£ —e— xLSTM[1:0]
4.2 2 13
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- S 12
. =]
1 Layer .‘é’ 1 -
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10 A
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2.4 1 9 -
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9
Parameters (non-embedding) Number of Parameters x10

Kaplan et al. 2020 Beck et al. 2024 “xLSTM”



Yes, but all out-of-the-box
algorithms are the same..

alpha = 1.2, beta =.(.).7

schedule free, d =100
schedule free, d =200

. ' schedule free, d =400
10°1. schedule free, d =800

schedule free, d =1,600

7 |
nesterov, d =100

- nesterov, d =200

- nesterov, d =400

~= nesterov, d =800
nesterov, d =1,600

s9d,d =200 A

dana, decay, d =100 —

dana, decay, d =200 —

dana, decay, d =400 w— 5gd, d =400 N,
dana, decay, d =800 = sgd, d =800

dana, decay, d =1,600 ==

sgd, d =1,600
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- dana-decaying, compute curve
= =: dana-constant, compute curve
----- sgd, compute curve

103 10° 107 10° 1011 1013
flops

Joint with: Ferbach, Everett,
Paquette, Gidel. ‘25

Momentum can change the scaling laws,
but only if the hyperparameters are
chosen problem-aware.

Stay tuned...



i




	Slide 1: Power law covariance is great  
	Slide 2: The Scaling hypothesis
	Slide 4: Talk Plan
	Slide 5: Designing a model…art 3: Compute optimal scaling laws
	Slide 6: Source
	Slide 7: CIFAR-10
	Slide 8: Fineweb-Edu-(Untrained-Embedding layer)
	Slide 9: Fineweb-Edu-(Trained-Embedding layer)
	Slide 10: Fineweb-Edu-(Untrained-Readout layer)
	Slide 11: Fineweb-Edu-(Trained-Readout layer)
	Slide 13: Talk Plan
	Slide 14: Question
	Slide 15
	Slide 16
	Slide 17: Proof idea x , x 
	Slide 18: Conclusion
	Slide 19
	Slide 20: Slope evolutions across layers (GPT2) 
	Slide 29: Talk Plan
	Slide 30: The Power law Random Features Model
	Slide 31: Q
	Slide 32: Loss curves of one-pass Gaussian SGD
	Slide 33: Relating F , K  to the deterministic equivalent
	Slide 34: For the deterministic equivalent:
	Slide 43
	Slide 49: Universal scaling regime
	Slide 51: Talk Plan
	Slide 52: Does the model matter for the scaling law?
	Slide 53: Does the algorithm matter for the scaling law?
	Slide 54
	Slide 55: Intermission

