Sequential Dynamics in Ising Spin Glasses

David Gamarnik (MIT)

Joint work with Yatin Dandi, Francisco Pernice and Lenka Zdeborová

August, 2025

- Given a random Hamiltonian $H(\sigma, \mathcal{R}), \sigma \in \Sigma$, \mathcal{R} encodes randomness of the model.
- Suppose an iterative algorithm \mathcal{A} is implemented sequentially $\sigma^t = \mathcal{A}(\mathcal{R}, \sigma_1, \dots, \sigma^{t-1}), t = 1, 2, \dots$, with fixed (random) start σ^0 .
- Examples: Markov Chain Monte Carlo/Glauber dynamics, Greedy, Simulated Annealing, etc.
- Goal: Characterise $H(\sigma_t, \mathcal{R})$ for "large" t.
- Verify that for bounded t, say $t = N^{O(1)}$, where N is model dimension.

$$H(\sigma_t, \mathcal{R}) < \max_{\sigma} H(\sigma, \mathcal{R})$$

- Given a random Hamiltonian $H(\sigma, \mathcal{R}), \sigma \in \Sigma$, \mathcal{R} encodes randomness of the model.
- Suppose an iterative algorithm \mathcal{A} is implemented sequentially $\sigma^t = \mathcal{A}(\mathcal{R}, \sigma_1, \dots, \sigma^{t-1}), t = 1, 2, \dots$, with fixed (random) start σ^0 .
- Examples: Markov Chain Monte Carlo/Glauber dynamics, Greedy, Simulated Annealing, etc.
- **Goal:** Characterise $H(\sigma_t, \mathcal{R})$ for "large" t.
- Verify that for bounded t, say $t = N^{O(1)}$, where N is model dimension.

$$H(\sigma_t, \mathcal{R}) < \max_{\sigma} H(\sigma, \mathcal{R})$$

- Given a random Hamiltonian $H(\sigma, \mathcal{R}), \sigma \in \Sigma$, \mathcal{R} encodes randomness of the model.
- Suppose an iterative algorithm \mathcal{A} is implemented sequentially $\sigma^t = \mathcal{A}(\mathcal{R}, \sigma_1, \dots, \sigma^{t-1}), t = 1, 2, \dots$, with fixed (random) start σ^0 .
- Examples: Markov Chain Monte Carlo/Glauber dynamics, Greedy, Simulated Annealing, etc.
- **Goal:** Characterise $H(\sigma_t, \mathcal{R})$ for "large" t.
- Verify that for bounded t, say $t = N^{O(1)}$, where N is model dimension.

$$H(\sigma_t, \mathcal{R}) < \max_{\sigma} H(\sigma, \mathcal{R})$$

- Given a random Hamiltonian $H(\sigma, \mathcal{R}), \sigma \in \Sigma$, \mathcal{R} encodes randomness of the model.
- Suppose an iterative algorithm \mathcal{A} is implemented sequentially $\sigma^t = \mathcal{A}(\mathcal{R}, \sigma_1, \dots, \sigma^{t-1}), t = 1, 2, \dots$, with fixed (random) start σ^0 .
- Examples: Markov Chain Monte Carlo/Glauber dynamics, Greedy, Simulated Annealing, etc.
- **Goal:** Characterise $H(\sigma_t, \mathcal{R})$ for "large" t.
- Verify that for bounded t, say $t = N^{O(1)}$, where N is model dimension.

$$H(\sigma_t, \mathcal{R}) < \max_{\sigma} H(\sigma, \mathcal{R})$$

- Given a random Hamiltonian $H(\sigma, \mathcal{R}), \sigma \in \Sigma$, \mathcal{R} encodes randomness of the model.
- Suppose an iterative algorithm \mathcal{A} is implemented sequentially $\sigma^t = \mathcal{A}(\mathcal{R}, \sigma_1, \dots, \sigma^{t-1}), t = 1, 2, \dots$, with fixed (random) start σ^0 .
- Examples: Markov Chain Monte Carlo/Glauber dynamics, Greedy, Simulated Annealing, etc.
- **Goal:** Characterise $H(\sigma_t, \mathcal{R})$ for "large" t.
- Verify that for bounded t, say $t = N^{O(1)}$, where N is model dimension.

$$H(\sigma_t, \mathcal{R}) < \max_{\sigma} H(\sigma, \mathcal{R})$$

- Given a random Hamiltonian $H(\sigma, \mathcal{R}), \sigma \in \Sigma$, \mathcal{R} encodes randomness of the model.
- Suppose an iterative algorithm \mathcal{A} is implemented sequentially $\sigma^t = \mathcal{A}(\mathcal{R}, \sigma_1, \dots, \sigma^{t-1}), t = 1, 2, \dots$, with fixed (random) start σ^0 .
- Examples: Markov Chain Monte Carlo/Glauber dynamics, Greedy, Simulated Annealing, etc.
- **Goal:** Characterise $H(\sigma_t, \mathcal{R})$ for "large" t.
- Verify that for bounded t, say $t = N^{O(1)}$, where N is model dimension.

$$H(\sigma_t, \mathcal{R}) < \max_{\sigma} H(\sigma, \mathcal{R})$$

- This work: computing the dynamics $H(\sigma_t, \mathcal{R})$ for spin glasses, specifically Sherrington-Kirkpatrick (2-body) N-spin model for linear time scale T = O(N).
- The remainder of this and next talk:
 - Model background
 - Main results
 - Prior literature
 - Algorithmic implications
 - Part II by Fran Pernice. Proof approaches: (i) Gaussian conditioning principle (ii) Cavity argument

- This work: computing the dynamics $H(\sigma_t, \mathcal{R})$ for spin glasses, specifically Sherrington-Kirkpatrick (2-body) N-spin model for linear time scale T = O(N).
- The remainder of this and next talk:
 - Model background
 - Main results
 - Prior literature
 - Algorithmic implications
 - Part II by Fran Pernice. Proof approaches: (i) Gaussian conditioning principle (ii) Cavity argument

- This work: computing the dynamics $H(\sigma_t, \mathcal{R})$ for spin glasses, specifically Sherrington-Kirkpatrick (2-body) N-spin model for linear time scale T = O(N).
- The remainder of this and next talk:
 - Model background
 - Main results
 - Prior literature
 - Algorithmic implications
 - Part II by Fran Pernice. Proof approaches: (i) Gaussian conditioning principle (ii) Cavity argument

- This work: computing the dynamics $H(\sigma_t, \mathcal{R})$ for spin glasses, specifically Sherrington-Kirkpatrick (2-body) N-spin model for linear time scale T = O(N).
- The remainder of this and next talk:
 - Model background
 - Main results
 - Prior literature
 - Algorithmic implications
 - Part II by Fran Pernice. Proof approaches: (i) Gaussian conditioning principle (ii) Cavity argument

- This work: computing the dynamics $H(\sigma_t, \mathcal{R})$ for spin glasses, specifically Sherrington-Kirkpatrick (2-body) N-spin model for linear time scale T = O(N).
- The remainder of this and next talk:
 - Model background
 - Main results
 - Prior literature
 - Algorithmic implications
 - Part II by Fran Pernice. Proof approaches: (i) Gaussian conditioning principle (ii) Cavity argument

- This work: computing the dynamics $H(\sigma_t, \mathcal{R})$ for spin glasses, specifically Sherrington-Kirkpatrick (2-body) N-spin model for linear time scale T = O(N).
- The remainder of this and next talk:
 - Model background
 - Main results
 - Prior literature
 - Algorithmic implications
 - Part II by Fran Pernice. Proof approaches: (i) Gaussian conditioning principle (ii) Cavity argument

- This work: computing the dynamics $H(\sigma_t, \mathcal{R})$ for spin glasses, specifically Sherrington-Kirkpatrick (2-body) N-spin model for linear time scale T = O(N).
- The remainder of this and next talk:
 - Model background
 - Main results
 - Prior literature
 - Algorithmic implications
 - Part II by Fran Pernice. Proof approaches: (i) Gaussian conditioning principle (ii) Cavity argument

- This work: computing the dynamics $H(\sigma_t, \mathcal{R})$ for spin glasses, specifically Sherrington-Kirkpatrick (2-body) N-spin model for linear time scale T = O(N).
- The remainder of this and next talk:
 - Model background
 - Main results
 - Prior literature
 - Algorithmic implications
 - Part II by Fran Pernice. Proof approaches: (i) Gaussian conditioning principle (ii) Cavity argument

- Given $J = (J_{ij}, 1 \le i < j \le N)$ i.i.d. $\mathcal{N}(0, 1/N)$ Gaussian symmetric matrix.
- Sherrington-Kirkpatrick model (2-spin model).

$$H(\sigma, J) = \langle \sigma, J\sigma \rangle = \sum_{ij} J_{ij}\sigma_i\sigma_j, \qquad \sigma \in \{\pm 1\}^N.$$

• *p*-spin model: $J = (J_{i_1,...,i_p}) \in \mathbb{R}^{N \otimes p}$ i.i.d. $\mathcal{N}\left(0, \frac{1}{N^{\frac{p-1}{2}}}\right)$.

$$H(\sigma, J) = \langle J, \sigma^{\otimes p} \rangle = \sum_{i_1, \dots, i_p} J_{i_1, \dots, i_p} \sigma_{i_1} \sigma_{i_2} \cdots \sigma_{i_p}, \qquad \sigma \in \{\pm 1\}^N.$$

- Given $J = (J_{ij}, 1 \le i < j \le N)$ i.i.d. $\mathcal{N}(0, 1/N)$ Gaussian symmetric matrix.
- Sherrington-Kirkpatrick model (2-spin model).

$$H(\sigma, J) = \langle \sigma, J\sigma \rangle = \sum_{ij} J_{ij}\sigma_i\sigma_j, \qquad \sigma \in \{\pm 1\}^N.$$

• *p*-spin model:
$$J=(J_{i_1,...,i_p})\in\mathbb{R}^{N\otimes p}$$
 i.i.d. $\mathcal{N}\left(0,\frac{1}{N^{\frac{p-1}{2}}}\right)$.

$$H(\sigma,J)=\langle J,\sigma^{\otimes p}\rangle=\sum_{i_1,\ldots,i_p}J_{i_1,\ldots,i_p}\sigma_{i_1}\sigma_{i_2}\cdots\sigma_{i_p},\qquad \sigma\in\{\pm 1\}^N.$$

- Given $J = (J_{ij}, 1 \le i < j \le N)$ i.i.d. $\mathcal{N}(0, 1/N)$ Gaussian symmetric matrix.
- Sherrington-Kirkpatrick model (2-spin model).

$$H(\sigma, J) = \langle \sigma, J\sigma \rangle = \sum_{ij} J_{ij}\sigma_i\sigma_j, \qquad \sigma \in \{\pm 1\}^N.$$

•
$$p$$
-spin model: $J=(J_{i_1,...,i_p})\in\mathbb{R}^{N\otimes p}$ i.i.d. $\mathcal{N}\left(0,\frac{1}{N^{\frac{p-1}{2}}}\right)$.

$$H(\sigma, J) = \langle J, \sigma^{\otimes p} \rangle = \sum_{i_1, i_2, \dots, i_p} J_{i_1, \dots, i_p} \sigma_{i_1} \sigma_{i_2} \cdots \sigma_{i_p}, \qquad \sigma \in \{\pm 1\}^N.$$

- Given $J = (J_{ij}, 1 \le i < j \le N)$ i.i.d. $\mathcal{N}(0, 1/N)$ Gaussian symmetric matrix.
- Sherrington-Kirkpatrick model (2-spin model).

$$H(\sigma, J) = \langle \sigma, J\sigma \rangle = \sum_{ij} J_{ij}\sigma_i\sigma_j, \qquad \sigma \in \{\pm 1\}^N.$$

• p-spin model: $J=(J_{i_1,...,i_p})\in\mathbb{R}^{N\otimes p}$ i.i.d. $\mathcal{N}\left(0,\frac{1}{N^{\frac{p-1}{2}}}\right)$.

$$H(\sigma, J) = \langle J, \sigma^{\otimes p} \rangle = \sum_{i_1, \dots, i_p} J_{i_1, \dots, i_p} \sigma_{i_1} \sigma_{i_2} \cdots \sigma_{i_p}, \qquad \sigma \in \{\pm 1\}^N.$$

- Given $J = (J_{ij}, 1 \le i < j \le N)$ i.i.d. $\mathcal{N}(0, 1/N)$ Gaussian symmetric matrix.
- Sherrington-Kirkpatrick model (2-spin model).

$$H(\sigma, J) = \langle \sigma, J\sigma \rangle = \sum_{ij} J_{ij} \sigma_i \sigma_j, \qquad \sigma \in \{\pm 1\}^N.$$

• p-spin model: $J=(J_{i_1,...,i_p})\in\mathbb{R}^{N\otimes p}$ i.i.d. $\mathcal{N}\left(0,\frac{1}{N^{\frac{p-1}{2}}}\right)$.

$$H(\sigma, J) = \langle J, \sigma^{\otimes p} \rangle = \sum_{i_1, \dots, i_p} J_{i_1, \dots, i_p} \sigma_{i_1} \sigma_{i_2} \cdots \sigma_{i_p}, \qquad \sigma \in \{\pm 1\}^N.$$

Ground states and free energy

Parisi [1980], Talagrand [2006]

• The limit ground state (Parisi constant)

$$\lim_{N} \frac{1}{N} \max_{\sigma \in \{\pm\}^{N}} H(\sigma, J) \triangleq \eta_{\rho, \text{Parisi}}$$

exists and can be computed via PDE.

The limit free energy

$$\lim_{N} \frac{1}{N} \log \left(\sum_{\sigma \in \{\pm\}^{N}} \exp\left(-\beta H(\sigma, J)\right) \right) \triangleq f(p, \beta)$$

exists and can be computed via (similar) PDE.

Ground states and free energy

Parisi [1980], Talagrand [2006]

• The limit ground state (Parisi constant)

$$\lim_{N} \frac{1}{N} \max_{\sigma \in \{\pm\}^{N}} H(\sigma, J) \triangleq \eta_{\rho, \text{Parisi}}$$

exists and can be computed via PDE.

The limit free energy

$$\lim_{N} \frac{1}{N} \log \left(\sum_{\sigma \in \{\pm\}^{N}} \exp\left(-\beta H(\sigma, J)\right) \right) \triangleq f(p, \beta)$$

exists and can be computed via (similar) PDE

Ground states and free energy

Parisi [1980], Talagrand [2006]

The limit ground state (Parisi constant)

$$\lim_{N} \frac{1}{N} \max_{\sigma \in \{\pm\}^{N}} H(\sigma, J) \triangleq \eta_{p, \text{Parisi}}$$

exists and can be computed via PDE.

The limit free energy

$$\lim_{N} \frac{1}{N} \log \left(\sum_{\sigma \in \{\pm\}^{N}} \exp \left(-\beta H(\sigma, J) \right) \right) \triangleq f(p, \beta)$$

exists and can be computed via (similar) PDE.

Fields

• Given $\sigma \in \{\pm 1\}^N$ define the field at spin *i* as

$$h_i = h_i(\sigma) \triangleq \sum_{i \neq i} J_{ij}\sigma_j.$$

Note:

$$H(\sigma) = \sum_{i} \sigma_{i} h_{i}.$$

Fields

• Given $\sigma \in \{\pm 1\}^N$ define the field at spin *i* as

$$h_i = h_i(\sigma) \triangleq \sum_{j \neq i} J_{ij}\sigma_j.$$

Note:

$$H(\sigma) = \sum_{i} \sigma_{i} h_{i}.$$

Fields

• Given $\sigma \in \{\pm 1\}^N$ define the field at spin *i* as

$$h_i = h_i(\sigma) \triangleq \sum_{j \neq i} J_{ij}\sigma_j.$$

Note:

$$H(\sigma) = \sum_{i} \sigma_{i} h_{i}.$$

Order of updated spins i(t):

- (a) i.i.d. uniform random $i(t) \in [N]$.
- (b) Scanning dynamics: i(1) = 1, i(2) = 2, ..., i(N) = N, i(N + 1) = 1, i(N + 2) = 2, ... etc. T scans = TN updates.

Greedy

- Initialize $\sigma^{(0)} \in \{\pm 1\}^N$.
- ② For t = 1, 2, ... update one coordinate i(t) greedily, keep others the same

$$\begin{split} \sigma_{i(t)}^{(t)} &= \arg\max_{\sigma = \pm 1} \sigma h_i^t = \mathrm{Sign} \left(h_i^t \right) \\ \sigma_j^{(t)} &= \sigma_j^{(t-1)}, \qquad j \neq i(t). \end{split}$$

Order of updated spins i(t):

- (a) i.i.d. uniform random $i(t) \in [N]$.
- (b) Scanning dynamics: i(1) = 1, i(2) = 2, ..., i(N) = N, i(N+1) = 1, i(N+2) = 2, ... etc. T scans = TN updates.

Greedy.

- Initialize $\sigma^{(0)} \in \{\pm 1\}^N$.
- ② For t = 1, 2, ... update one coordinate i(t) greedily, keep others the same

$$\sigma_{i(t)}^{(t)} = \arg\max_{\sigma = \pm 1} \sigma h_i^t = \operatorname{Sign} \left(h_i^t \right)$$
$$\sigma_j^{(t)} = \sigma_j^{(t-1)}, \qquad j \neq i(t).$$

Order of updated spins i(t):

- (a) i.i.d. uniform random $i(t) \in [N]$.
- (b) Scanning dynamics: i(1) = 1, i(2) = 2, ..., i(N) = N, i(N+1) = 1, i(N+2) = 2, ... etc. T scans = TN updates.

Greedy.

- Initialize $\sigma^{(0)} \in \{\pm 1\}^N$.
- ② For t = 1, 2, ... update one coordinate i(t) greedily, keep others the same

$$\begin{split} \sigma_{i(t)}^{(t)} &= \arg\max_{\sigma = \pm 1} \sigma h_i^t = \mathrm{Sign} \left(h_i^t \right) \\ \sigma_j^{(t)} &= \sigma_j^{(t-1)}, \qquad j \neq i(t). \end{split}$$

Order of updated spins i(t):

- (a) i.i.d. uniform random $i(t) \in [N]$.
- (b) Scanning dynamics: i(1) = 1, i(2) = 2, ..., i(N) = N, i(N+1) = 1, i(N+2) = 2, ... etc. T scans = TN updates.

Greedy.

- Initialize $\sigma^{(0)} \in \{\pm 1\}^N$.
- For t = 1, 2, ... update one coordinate i(t) greedily, keep others the same

$$\sigma_{i(t)}^{(t)} = \arg\max_{\sigma = \pm 1} \sigma h_i^t = \operatorname{Sign}(h_i^t)$$

$$\sigma_j^{(t)} = \sigma_j^{(t-1)}, \qquad j \neq i(t).$$

Dynamics. Glauber

Glauber dynamics.

- 1 Initialize $\sigma^{(0)} \in \{\pm 1\}^N$.
- ② For t = 1, 2, ... update one coordinate i(t) randomly, keep others the same

$$\mathbb{P}\left(\sigma_{i(t)}^{(t)} = \pm 1\right) = \frac{\exp(\pm\beta h_i)}{\exp(\beta h_i) + \exp(-\beta h_i)}$$
$$\sigma_{j}^{(t)} = \sigma_{j}^{(t-1)}, \quad j \neq i(t).$$

General dynamics: any randomized rule of the form $\mathbb{P}(\sigma_i = 1) = c(h_i^t)$ for some fixed function $c(\cdot)$. $c(x) = (1/2)(\tanh(\beta x) + 1)$ for the Glauber dynamics

Dynamics. Glauber

Glauber dynamics.

- **1** Initialize $\sigma^{(0)} \in \{\pm 1\}^N$.
- **②** For t = 1, 2, ... update one coordinate i(t) randomly, keep others the same

$$\mathbb{P}\left(\sigma_{i(t)}^{(t)} = \pm 1\right) = \frac{\exp(\pm \beta h_i)}{\exp(\beta h_i) + \exp(-\beta h_i)}$$
$$\sigma_j^{(t)} = \sigma_j^{(t-1)}, \quad j \neq i(t).$$

General dynamics: any randomized rule of the form $\mathbb{P}(\sigma_i = 1) = c(h_i^t)$ for some fixed function $c(\cdot)$. $c(x) = (1/2)(\tanh(\beta x) + 1)$ for the Glauber dynamics

Dynamics. Glauber

Glauber dynamics.

- Initialize $\sigma^{(0)} \in \{\pm 1\}^N$.
- ② For t = 1, 2, ... update one coordinate i(t) randomly, keep others the same

$$\mathbb{P}\left(\sigma_{i(t)}^{(t)} = \pm 1\right) = \frac{\exp(\pm \beta h_i)}{\exp(\beta h_i) + \exp(-\beta h_i)}$$
$$\sigma_j^{(t)} = \sigma_j^{(t-1)}, \qquad j \neq i(t).$$

General dynamics: any randomized rule of the form $\mathbb{P}(\sigma_i = 1) = c(h_i^t)$ for some fixed function $c(\cdot)$. $c(x) = (1/2)(\tanh(\beta x) + 1)$ for the Glauber dynamics.

Main result. Scanning dynamics, informally

- $\sigma^t \in \{\pm 1\}^N$ spin configuration at the end of scan $t = 1, 2, \dots, T$.
- Fix $x \in [0, 1]$. We give a recursive characterization of the limiting distribution of $\left(\left(\sigma_{xN}^t, h_{xN}^t\right), 1 \le t \le T\right)$ for every constant T

$$((\sigma_{xN}^t, h_{xN}^t), 1 \le t \le T) \xrightarrow{\text{means}} ((\sigma_x^t, h_x^t), 1 \le t \le T),$$
a certain r.v.
$$((\sigma_x^t, h_x^t), 1 \le t \le T) \in \{\pm 1\}^T \times \mathbb{R}^T \text{ which}$$

Asymptotic expected energy achieved at time TN (after T scans) satisfies

$$\lim_{N} \frac{1}{N} \sum_{i} \sigma_{i}^{T} h_{i}^{T} = \sum_{t < T} \mathbb{E} \int_{0}^{1} (\sigma_{x}^{t} - \sigma_{x}^{t-1}) h_{x}^{t} dx.$$

Main result. Scanning dynamics, informally

- $\sigma^t \in \{\pm 1\}^N$ spin configuration at the end of scan $t = 1, 2, \dots, T$.
- Fix $x \in [0, 1]$. We give a recursive characterization of the limiting distribution of $(\sigma_{xN}^t, h_{xN}^t)$, $1 \le t \le T$ for every constant T

$$\left(\left(\sigma_{xN}^{t}, h_{xN}^{t}\right), 1 \leq t \leq T\right) \stackrel{\text{weakly}}{\longrightarrow} \left(\left(\sigma_{x}^{t}, h_{x}^{t}\right), 1 \leq t \leq T\right),$$

for a certain r.v. $((\sigma_X^t, h_X^t), 1 \le t \le T) \in \{\pm 1\}^T \times \mathbb{R}^T$ which we characterize next.

Asymptotic expected energy achieved at time TN (after T scans) satisfies

$$\lim_{N} \frac{1}{N} \sum_{i} \sigma_{i}^{T} h_{i}^{T} = \sum_{t \leq T} \mathbb{E} \int_{0}^{1} (\sigma_{x}^{t} - \sigma_{x}^{t-1}) h_{x}^{t} dx.$$

Main result. Scanning dynamics, informally

- $\sigma^t \in \{\pm 1\}^N$ spin configuration at the end of scan t = 1, 2, ..., T.
- Fix $x \in [0, 1]$. We give a recursive characterization of the limiting distribution of $((\sigma_{xN}^t, h_{xN}^t), 1 \le t \le T)$ for every constant T

$$\left(\left(\sigma_{xN}^{t}, h_{xN}^{t}\right), 1 \leq t \leq T\right) \stackrel{\text{weakly}}{\longrightarrow} \left(\left(\sigma_{x}^{t}, h_{x}^{t}\right), 1 \leq t \leq T\right),$$
 for a certain r.v. $\left(\left(\sigma_{x}^{t}, h_{x}^{t}\right), 1 \leq t \leq T\right) \in \{\pm 1\}^{T} \times \mathbb{R}^{T}$ which we characterize next.

Asymptotic expected energy achieved at time TN (after T scans) satisfies

$$\lim_{N} \frac{1}{N} \sum_{i} \sigma_{i}^{T} h_{i}^{T} = \sum_{t \leq T} \mathbb{E} \int_{0}^{1} (\sigma_{x}^{t} - \sigma_{x}^{t-1}) h_{x}^{t} dx.$$

Main result. Scanning dynamics, informally

- $\sigma^t \in \{\pm 1\}^N$ spin configuration at the end of scan $t = 1, 2, \dots, T$.
- Fix $x \in [0, 1]$. We give a recursive characterization of the limiting distribution of $((\sigma_{xN}^t, h_{xN}^t), 1 \le t \le T)$ for every constant T

$$\left(\left(\sigma_{xN}^{t},h_{xN}^{t}\right),1\leq t\leq T\right)\overset{\text{weakly}}{\longrightarrow}\left(\left(\sigma_{x}^{t},h_{x}^{t}\right),1\leq t\leq T\right),$$
 for a certain r.v. $\left(\left(\sigma_{x}^{t},h_{x}^{t}\right),1\leq t\leq T\right)\in\{\pm 1\}^{T}\times\mathbb{R}^{T}$ which we characterize next.

Asymptotic expected energy achieved at time TN (after T scans) satisfies

$$\lim_{N} \frac{1}{N} \sum_{i} \sigma_{i}^{T} h_{i}^{T} = \sum_{t \leq T} \mathbb{E} \int_{0}^{1} (\sigma_{x}^{t} - \sigma_{x}^{t-1}) h_{x}^{t} dx.$$

- Fix a psd $K \in \mathbb{R}^{T \times T}$ and a sequence of vectors $v^t \in \mathbb{R}^t$, 1 < t < T.
- Let $G = (G^1, ..., G^T) \stackrel{d}{=} \mathcal{N}(0, K)$.
- Define $((\sigma^1, h^1), \dots, (\sigma^T, h^T)) \in \{\pm 1\}^T \times \mathbb{R}^T$ recursively via $\sigma_0 = \pm 1$ u.a.r. and

$$\begin{cases} h^t = G^t + \langle v^t, (\sigma_0, \dots, \sigma_{t-1}) \rangle \\ \sigma^t = c(h^t, U^t). \end{cases}$$

- Fix a psd $K \in \mathbb{R}^{T \times T}$ and a sequence of vectors $v^t \in \mathbb{R}^t$, $1 \le t \le T$.
- Let $G = (G^1, ..., G^T) \stackrel{d}{=} \mathcal{N}(0, K)$.
- Define $((\sigma^1, h^1), \dots, (\sigma^T, h^T)) \in \{\pm 1\}^T \times \mathbb{R}^T$ recursively via $\sigma_0 = \pm 1$ u.a.r. and

$$\begin{cases} h^t = G^t + \langle v^t, (\sigma_0, \dots, \sigma_{t-1}) \rangle, \\ \sigma^t = c(h^t, U^t). \end{cases}$$

- Fix a psd $K \in \mathbb{R}^{T \times T}$ and a sequence of vectors $v^t \in \mathbb{R}^t$, 1 < t < T.
- Let $G = (G^1, ..., G^T) \stackrel{d}{=} \mathcal{N}(0, K)$.
- Define $((\sigma^1, h^1), \dots, (\sigma^T, h^T)) \in \{\pm 1\}^T \times \mathbb{R}^T$ recursively via $\sigma_0 = \pm 1$ u.a.r. and

$$\left\{ egin{array}{ll} h^t &= G^t + \langle v^t, (\sigma_0, \ldots, \sigma_{t-1})
angle, \ \sigma^t &= c(h^t, U^t). \end{array}
ight.$$

- Fix a psd $K \in \mathbb{R}^{T \times T}$ and a sequence of vectors $v^t \in \mathbb{R}^t$, $1 \le t \le T$.
- Let $G = (G^1, ..., G^T) \stackrel{d}{=} \mathcal{N}(0, K)$.
- Define $((\sigma^1, h^1), \dots, (\sigma^T, h^T)) \in \{\pm 1\}^T \times \mathbb{R}^T$ recursively via $\sigma_0 = \pm 1$ u.a.r. and

$$\begin{cases} h^t &= G^t + \langle v^t, (\sigma_0, \dots, \sigma_{t-1}) \rangle, \\ \sigma^t &= c(h^t, U^t). \end{cases}$$

- Fix a psd $K \in \mathbb{R}^{T \times T}$ and a sequence of vectors $v^t \in \mathbb{R}^t$, $1 \le t \le T$.
- Let $G = (G^1, ..., G^T) \stackrel{d}{=} \mathcal{N}(0, K)$.
- Define $((\sigma^1, h^1), \dots, (\sigma^T, h^T)) \in \{\pm 1\}^T \times \mathbb{R}^T$ recursively via $\sigma_0 = \pm 1$ u.a.r. and

$$\begin{cases} h^t = G^t + \langle v^t, (\sigma_0, \dots, \sigma_{t-1}) \rangle, \\ \sigma^t = c(h^t, U^t). \end{cases}$$

Introduce

$$\mathcal{C}(K, v) = \mathbb{E}\sigma^{s}\sigma^{t},$$
 Correlation function, $0 \leq s, t \leq T$
 $\mathcal{R}(K, v) = \mathbb{E}G^{s}\sigma^{t},$ Response function, $0 \leq s, t \leq T$

• Consider an ODE uniquely defining $K(x) \in \mathbb{R}^{T \times T}, v(x) \in \mathbb{R} \times \mathbb{R}^2 \times \cdots \mathbb{R}^T, x \in [0, 1]$:

$$\frac{dK(x)}{dx} = C_{1:T,1:T}(K(x), v(x)) - C_{0:T-1,1:T-1}(K(x), v(x)),$$

$$\frac{dv(x)}{dx} = \mathcal{R}_{1:T,T}(K(x), v(x)) - C_{0:T-1,T-1}(K(x), v(x)).$$

Introduce

$$\mathcal{C}(K, v) = \mathbb{E}\sigma^{s}\sigma^{t},$$
 Correlation function, $0 \leq s, t \leq T$, $\mathcal{R}(K, v) = \mathbb{E}G^{s}\sigma^{t},$ Response function, $0 \leq s, t \leq T$.

• Consider an ODE uniquely defining $K(x) \in \mathbb{R}^{T \times T}, v(x) \in \mathbb{R} \times \mathbb{R}^2 \times \cdots \mathbb{R}^T, x \in [0, 1]$:

$$\frac{dK(x)}{dx} = C_{1:T,1:T}(K(x), v(x)) - C_{0:T-1,1:T-1}(K(x), v(x)),$$

$$\frac{dv(x)}{dx} = \mathcal{R}_{1:T,T}(K(x), v(x)) - C_{0:T-1,T-1}(K(x), v(x)).$$

Introduce

$$\mathcal{C}(K, v) = \mathbb{E}\sigma^{s}\sigma^{t},$$
 Correlation function, $0 \leq s, t \leq T$, $\mathcal{R}(K, v) = \mathbb{E}G^{s}\sigma^{t},$ Response function, $0 \leq s, t \leq T$.

• Consider an ODE uniquely defining $K(x) \in \mathbb{R}^{T \times T}, v(x) \in \mathbb{R} \times \mathbb{R}^2 \times \cdots \mathbb{R}^T, x \in [0, 1]$:

$$\frac{dK(x)}{dx} = C_{1:T,1:T}(K(x), v(x)) - C_{0:T-1,1:T-1}(K(x), v(x)),$$

$$\frac{dv(x)}{dx} = \mathcal{R}_{1:T,T}(K(x), v(x)) - C_{0:T-1,T-1}(K(x), v(x)).$$

Boundary condition

$$K(0) = \int_0^1 C_{0:T-1,0:T-1}(K(x), v(x)) dx,$$

$$v(0) = \int_0^1 R_{0:T-1,T-1}(K(x), v(x)) dx.$$

Theorem

Fix $x_1, \ldots, x_R \in [0, 1]$. Then the distribution of

$$(\sigma_{x_rN}^t, h_{x_rN}^t, 1 \leq t \leq T, 1 \leq r \leq R) \stackrel{\text{weakly}}{\longrightarrow} (\sigma_{x_r}^t, h_{x_r}^t, 1 \leq t \leq T).$$

converges to the independent product of $(\sigma_{x_r}^t, h_{x_r}^t, 1 \le t \le T), 1 \le r \le R.$

Corollary

Let $(\sigma_x^t, h_x^t, 1 \le t \le T) \in \{\pm 1\}^T \times \mathbb{R}^T$ be distributed according the stochastic process driven by (K(x), v(x)) solving this ODE. For every "nice" update function c and (pseudo-Lipschitz) test function $\phi : \{\pm 1\}^T \times \mathbb{R}^T \to \mathbb{R}$

$$\lim_N \frac{1}{N} \sum_{1 \leq i \leq N} \phi(\sigma_i^t, h_i^t, 1 \leq t \leq T) = \int_0^1 \mathbb{E} \phi(\sigma_x^t, h_x^t, 1 \leq t \leq T) dx.$$

- Physics derivation of equations for Langevin dynamics for spherical spin glasses. Discovery of "aging" Cugliandolo and Kurchan [93]
- Rigorous verification of CK equations Ben Arous, Dembo and Guionnet, [95],[97],[01]

$$C(s,t) \sim \frac{1}{\left(\frac{t}{s}\right)^{\frac{3}{4}}}, \qquad 0 << s << t.$$

- for large s you need $t \geq s(1/\epsilon)^{4/3}$ to get $C < \epsilon$.
- Energy achieved by Langevin dynamics in spherical models in linear time scale. Sellke [23]

- Physics derivation of equations for Langevin dynamics for spherical spin glasses. Discovery of "aging" Cugliandolo and Kurchan [93]
- Rigorous verification of CK equations Ben Arous, Dembo and Guionnet, [95],[97],[01]

$$C(s,t) \sim \frac{1}{\left(\frac{t}{s}\right)^{\frac{3}{4}}}, \qquad 0 << s << t.$$

- for large s you need $t \ge s(1/\epsilon)^{4/3}$ to get $C < \epsilon$.
- Energy achieved by Langevin dynamics in spherical models in linear time scale. Sellke [23]

- Physics derivation of equations for Langevin dynamics for spherical spin glasses. Discovery of "aging" Cugliandolo and Kurchan [93]
- Rigorous verification of CK equations Ben Arous, Dembo and Guionnet, [95],[97],[01]

$$C(s,t) \sim \frac{1}{\left(\frac{t}{s}\right)^{\frac{3}{4}}}, \qquad 0 << s << t.$$

- for large s you need $t \ge s(1/\epsilon)^{4/3}$ to get $C < \epsilon$.
- Energy achieved by Langevin dynamics in spherical models in linear time scale. Sellke [23]

- Physics derivation of equations for Langevin dynamics for spherical spin glasses. Discovery of "aging" Cugliandolo and Kurchan [93]
- Rigorous verification of CK equations Ben Arous, Dembo and Guionnet, [95],[97],[01]

$$C(s,t) \sim \frac{1}{\left(\frac{t}{s}\right)^{\frac{3}{4}}}, \qquad 0 << s << t.$$

- for large s you need $t \ge s(1/\epsilon)^{4/3}$ to get $C < \epsilon$.
- Energy achieved by Langevin dynamics in spherical models in linear time scale. Sellke [23]

- Dynamics using TAP approach Biroli [99]
- Simulations for versions of Greedy (zero temperature) algs Parisi [03]
- MCMC for cliques in random graphs (Erdös-Rényi and Hidden Clique Model) with empty starting point Chen, Mossel, Zadik [22]
- Gradient descent from complete set for Hidden Clique Model Gheissari, Jagannath, Yu [23]
- Dynamics in \mathbb{Z}^d from warm start Alaoui, Eldan, Gheissari, Piana [25]

- Dynamics using TAP approach Biroli [99]
- Simulations for versions of Greedy (zero temperature) algs Parisi [03]
- MCMC for cliques in random graphs (Erdös-Rényi and Hidden Clique Model) with empty starting point Chen, Mossel, Zadik [22]
- Gradient descent from complete set for Hidden Clique Model Gheissari, Jagannath, Yu [23]
- Dynamics in \mathbb{Z}^d from warm start Alaoui, Eldan, Gheissari, Piana [25]

- Dynamics using TAP approach Biroli [99]
- Simulations for versions of Greedy (zero temperature) algs Parisi [03]
- MCMC for cliques in random graphs (Erdös-Rényi and Hidden Clique Model) with empty starting point Chen, Mossel, Zadik [22]
- Gradient descent from complete set for Hidden Clique Model Gheissari, Jagannath, Yu [23]
- Dynamics in \mathbb{Z}^d from warm start Alaoui, Eldan, Gheissari, Piana [25]

- Dynamics using TAP approach Biroli [99]
- Simulations for versions of Greedy (zero temperature) algs Parisi [03]
- MCMC for cliques in random graphs (Erdös-Rényi and Hidden Clique Model) with empty starting point Chen, Mossel, Zadik [22]
- Gradient descent from complete set for Hidden Clique Model Gheissari, Jagannath, Yu [23]
- Dynamics in \mathbb{Z}^d from warm start Alaoui, Eldan, Gheissari, Piana [25]

- Dynamics using TAP approach Biroli [99]
- Simulations for versions of Greedy (zero temperature) algs Parisi [03]
- MCMC for cliques in random graphs (Erdös-Rényi and Hidden Clique Model) with empty starting point Chen, Mossel, Zadik [22]
- Gradient descent from complete set for Hidden Clique Model Gheissari, Jagannath, Yu [23]
- Dynamics in \mathbb{Z}^d from warm start Alaoui, Eldan, Gheissari Piana [25]

- Dynamics using TAP approach Biroli [99]
- Simulations for versions of Greedy (zero temperature) algs Parisi [03]
- MCMC for cliques in random graphs (Erdös-Rényi and Hidden Clique Model) with empty starting point Chen, Mossel, Zadik [22]
- Gradient descent from complete set for Hidden Clique Model Gheissari, Jagannath, Yu [23]
- Dynamics in \mathbb{Z}^d from warm start Alaoui, Eldan, Gheissari, Piana [25]

- Does the Greedy algorithm reach near optimality (ground state) η_{p,Parisi}? No for p ≥ 3 in linear time because of the Overlap Gap Property (OGP).
- Near optimal algorithm for p = 2 (Sherrington-Kirkpatrick) exists, Montanari [19].
- No known als for $p \ge 3$. OGP, which exists for p = 4, 6, 8 and all $p \ge 10$ implies no near optimal *stable* algs.
- Tight value achievable by stable algs via branching (ultrametric) OGP, Alaoui, Montanari, Sellke [21], Huang, Sellke [22].
- But Greedy/Glauber are not stable...

- Does the Greedy algorithm reach near optimality (ground state) η_{p,Parisi}? No for p ≥ 3 in linear time because of the Overlap Gap Property (OGP).
- Near optimal algorithm for p = 2 (Sherrington-Kirkpatrick) exists, Montanari [19].
- No known als for $p \ge 3$. OGP, which exists for p = 4, 6, 8 and all $p \ge 10$ implies no near optimal *stable* algs.
- Tight value achievable by stable algs via branching (ultrametric) OGP, Alaoui, Montanari, Sellke [21], Huang, Sellke [22].
- But Greedy/Glauber are not stable...

- Does the Greedy algorithm reach near optimality (ground state) $\eta_{p,\text{Parisi}}$? No for $p \geq 3$ in linear time because of the Overlap Gap Property (OGP).
- Near optimal algorithm for p = 2 (Sherrington-Kirkpatrick) exists, Montanari [19].
- No known als for $p \ge 3$. OGP, which exists for p = 4, 6, 8 and all $p \ge 10$ implies no near optimal *stable* algs.
- Tight value achievable by stable algs via branching (ultrametric) OGP, Alaoui, Montanari, Sellke [21], Huang, Sellke [22].
- But Greedy/Glauber are not stable...

- Does the Greedy algorithm reach near optimality (ground state) $\eta_{p,\text{Parisi}}$? No for $p \geq 3$ in linear time because of the Overlap Gap Property (OGP).
- Near optimal algorithm for p = 2 (Sherrington-Kirkpatrick) exists, Montanari [19].
- No known als for $p \ge 3$. OGP, which exists for p = 4, 6, 8 and all $p \ge 10$ implies no near optimal *stable* algs.
- Tight value achievable by stable algs via branching (ultrametric) OGP, Alaoui, Montanari, Sellke [21], Huang, Sellke [22].
- But Greedy/Glauber are not stable...

- Does the Greedy algorithm reach near optimality (ground state) $\eta_{p,\text{Parisi}}$? No for $p \geq 3$ in linear time because of the Overlap Gap Property (OGP).
- Near optimal algorithm for p = 2 (Sherrington-Kirkpatrick) exists, Montanari [19].
- No known als for $p \ge 3$. OGP, which exists for p = 4, 6, 8 and all $p \ge 10$ implies no near optimal *stable* algs.
- Tight value achievable by stable algs via branching (ultrametric) OGP, Alaoui, Montanari, Sellke [21], Huang, Sellke [22].
- But Greedy/Glauber are not stable...

- Does the Greedy algorithm reach near optimality (ground state) η_{p,Parisi}? No for p ≥ 3 in linear time because of the Overlap Gap Property (OGP).
- Near optimal algorithm for p = 2 (Sherrington-Kirkpatrick) exists, Montanari [19].
- No known als for $p \ge 3$. OGP, which exists for p = 4, 6, 8 and all $p \ge 10$ implies no near optimal *stable* algs.
- Tight value achievable by stable algs via branching (ultrametric) OGP, Alaoui, Montanari, Sellke [21], Huang, Sellke [22].
- But Greedy/Glauber are not stable...

- Does the Greedy algorithm reach near optimality (ground state) η_{p,Parisi}? No for p ≥ 3 in linear time because of the Overlap Gap Property (OGP).
- Near optimal algorithm for p = 2 (Sherrington-Kirkpatrick) exists, Montanari [19].
- No known als for $p \ge 3$. OGP, which exists for p = 4, 6, 8 and all $p \ge 10$ implies no near optimal *stable* algs.
- Tight value achievable by stable algs via branching (ultrametric) OGP, Alaoui, Montanari, Sellke [21], Huang, Sellke [22].
- But Greedy/Glauber are not stable...

Overlap Gap Property (OGP)

Theorem (Chen, G, Panchenko, Rahman [19], G, Jagannath, Kizildag [23])

p-spin model exhibits OGP for $p=4,6,8,\geq 10$. Specifically, there exists $\eta_{p,\text{OGP}}<\eta_{p,\text{Parisi}}$ s.t. for every $\sigma_1,\sigma_2\in\{\pm\}^N$ satisfying $H(\sigma_1),H(\sigma_2)\geq\eta_{p,\text{OGP}}$ it holds

$$\frac{1}{N}\langle \sigma_1, \sigma_2 \rangle \notin (\nu_1, \nu_2)$$

for some $0 < \nu_1 < \nu_2 < 1$.

OGP is an obstruction to stable algs.

OGP is a barrier to sequential dynamics at linear time scale

• Consider smoothed dynamics where $\tau_i \in [-1, 1]$ using smooth approximation ϕ of the $\operatorname{sign}(x)$ function. Consider the implied dynamics $\tau^t \in [-1, 1]^N$, $h^t \in \mathbb{R}^N$.

Theorem (This work

- (a) Suppose $J \approx \hat{J}$. Then for every T = O(1) (linear time scale), $\tau^T(J) \approx \tau^T(\hat{J})$. Namely τ^T is stable as a function of disorder J. As a result $H(\tau^T) \leq \eta_{p,OGP}$ whp.
- (b) Suppose $\phi \approx \text{sign}(x)$. Then $(\sigma^T, h^T) \stackrel{\circ}{\approx} (\tau^T, h^T)$. Then $H(\sigma^T) \approx H(\tau^T) \leq \eta_{p,\text{OGP}}$ OGP is a barrier to sequential dynamics at linear time scale.

OGP is a barrier to sequential dynamics at linear time scale

• Consider smoothed dynamics where $\tau_i \in [-1, 1]$ using smooth approximation ϕ of the $\operatorname{sign}(x)$ function. Consider the implied dynamics $\tau^t \in [-1, 1]^N$, $h^t \in \mathbb{R}^N$.

Theorem (This work)

- (a) Suppose $J \approx \hat{J}$. Then for every T = O(1) (linear time scale), $\tau^T(J) \approx \tau^T(\hat{J})$. Namely τ^T is stable as a function of disorder J. As a result $H(\tau^T) \leq \eta_{p, OGP}$ whp.
- (b) Suppose $\phi \approx \text{sign}(x)$. Then $(\sigma^T, h^T) \stackrel{d}{\approx} (\tau^T, h^T)$. Then $H(\sigma^T) \approx H(\tau^T) \leq \eta_{p, \text{OGP}}$ OGP is a barrier to sequential dynamics at linear time scale.

- Analysis beyond linear time. Conjecture: Greedy alg gets stuck in O(N log N) steps and does not reach ground state energy
- Sparse graphs using the second (cavity) argument which does not require Gaussian conditioning principle
- Glauber dynamics for Number Partitioning Problem. (Greedy fails Kizildag [25] and gives $\sqrt{\pi/8}$ vs $\exp(-\Theta(\log^2 n))$ for the best poly-time alg).

- Analysis beyond linear time. Conjecture: Greedy alg gets stuck in O(N log N) steps and does not reach ground state energy
- Sparse graphs using the second (cavity) argument which does not require Gaussian conditioning principle
- Glauber dynamics for Number Partitioning Problem. (Greedy fails Kizildag [25] and gives $\sqrt{\pi/8}$ vs $\exp(-\Theta(\log^2 n))$ for the best poly-time alg).

- Analysis beyond linear time. Conjecture: Greedy alg gets stuck in O(N log N) steps and does not reach ground state energy
- Sparse graphs using the second (cavity) argument which does not require Gaussian conditioning principle
- Glauber dynamics for Number Partitioning Problem. (Greedy fails Kizildag [25] and gives $\sqrt{\pi/8}$ vs $\exp(-\Theta(\log^2 n))$ for the best poly-time alg).

- Analysis beyond linear time. Conjecture: Greedy alg gets stuck in O(N log N) steps and does not reach ground state energy
- Sparse graphs using the second (cavity) argument which does not require Gaussian conditioning principle
- Glauber dynamics for Number Partitioning Problem. (Greedy fails Kizildag [25] and gives $\sqrt{\pi/8}$ vs $\exp(-\Theta(\log^2 n))$ for the best poly-time alg).