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Challenge: characterizing dynamics in random
structures

Given a random Hamiltonian H(σ,R), σ ∈ Σ, R encodes
randomness of the model.
Suppose an iterative algorithm A is implemented
sequentially σt = A(R, σ1, . . . , σ

t−1), t = 1,2, . . . , with
fixed (random) start σ0.
Examples: Markov Chain Monte Carlo/Glauber dynamics,
Greedy, Simulated Annealing, etc.
Goal: Characterise H(σt ,R) for ”large” t .
Verify that for bounded t , say t = NO(1), where N is model
dimension.

H(σt ,R) < max
σ

H(σ,R)
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Dynamics in spin glasses

This work: computing the dynamics H(σt ,R) for spin
glasses, specifically Sherrington-Kirkpatrick (2-body)
N-spin model for linear time scale T = O(N).
The remainder of this and next talk:
� Model background
� Main results
� Prior literature
� Algorithmic implications
� Part II by Fran Pernice. Proof approaches: (i) Gaussian

conditioning principle (ii) Cavity argument
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Ising spin glasses. Model description

Given J = (Jij ,1 ≤ i < j ≤ N) i.i.d. N (0,1/N) – Gaussian
symmetric matrix.
Sherrington-Kirkpatrick model (2-spin model).

H(σ, J) = 〈σ, Jσ〉 =
∑

ij

Jijσiσj , σ ∈ {±1}N .

p-spin model: J = (Ji1,...,ip ) ∈ RN⊗p i.i.d. N
(

0, 1

N
p−1

2

)
.

H(σ, J) = 〈J, σ⊗p〉 =
∑

i1,i2,...,ip

Ji1,...,ipσi1σi2 · · ·σip , σ ∈ {±1}N .

σ ∈ RN : ‖σ‖2 = N – spherical spin glass.
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Ground states and free energy

Parisi [1980], Talagrand [2006]
The limit ground state (Parisi constant)

lim
N

1
N

max
σ∈{±}N

H(σ, J) , ηp,Parisi

exists and can be computed via PDE.
The limit free energy

lim
N

1
N

log

 ∑
σ∈{±}N

exp (−βH(σ, J))

 , f (p, β)

exists and can be computed via (similar) PDE.
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Fields

Given σ ∈ {±1}N define the field at spin i as

hi = hi(σ) ,
∑
j 6=i

Jijσj .

Note:

H(σ) =
∑

i

σihi .
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Dynamics. Greedy

Order of updated spins i(t):
(a) i.i.d. uniform random i(t) ∈ [N].
(b) Scanning dynamics: i(1) = 1, i(2) = 2, . . . , i(N) =

N, i(N + 1) = 1, i(N + 2) = 2, . . . etc. T scans = TN
updates.

Greedy.
1 Initialize σ(0) ∈ {±1}N .
2 For t = 1,2, . . . update one coordinate i(t) greedily, keep

others the same

σ
(t)
i(t) = arg max

σ=±1
σht

i = Sign
(
ht

i
)

σ
(t)
j = σ

(t−1)
j , j 6= i(t).
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Dynamics. Glauber

Glauber dynamics.
1 Initialize σ(0) ∈ {±1}N .
2 For t = 1,2, . . . update one coordinate i(t) randomly, keep

others the same

P
(
σ
(t)
i(t) = ±1

)
=

exp(±βhi)

exp(βhi) + exp(−βhi)

σ
(t)
j = σ

(t−1)
j , j 6= i(t).

General dynamics: any randomized rule of the form
P(σi = 1) = c(ht

i ) for some fixed function c(·).
c(x) = (1/2)(tanh(βx) + 1) for the Glauber dynamics.
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Main result. Scanning dynamics, informally

σt ∈ {±1}N – spin configuration at the end of scan
t = 1,2, . . . ,T .
Fix x ∈ [0,1]. We give a recursive characterization of the
limiting distribution of

((
σt

xN ,h
t
xN

)
,1 ≤ t ≤ T

)
for every

constant T((
σt

xN ,h
t
xN
)
,1 ≤ t ≤ T

) weakly−→
((
σt

x ,h
t
x
)
,1 ≤ t ≤ T

)
,

for a certain r.v.
((
σt

x ,ht
x
)
,1 ≤ t ≤ T

)
∈ {±1}T × RT which

we characterize next.
Asymptotic expected energy achieved at time TN (after T
scans) satisfies

lim
N

1
N

∑
i

σT
i hT

i =
∑
t≤T

E
∫ 1

0
(σt

x − σt−1
x )ht

xdx .
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Main result. Scanning dynamics for T scans, formally

Fix a psd K ∈ RT×T and a sequence of vectors
v t ∈ Rt ,1 ≤ t ≤ T .

Let G = (G1, . . . ,GT )
d
= N (0,K ).

Define
(
(σ1,h1), . . . , (σT ,hT )

)
∈ {±1}T × RT recursively

via σ0 = ±1 u.a.r. and

{
ht = Gt + 〈v t , (σ0, . . . , σt−1)〉,
σt = c(ht ,U t ).

For each K ∈ RT×T , v = (v1, . . . , vT ) ∈ R× R2 × · · ·RT we
obtain a stochastic process (σt (ω),ht (ω)),1 ≤ t ≤ T .
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Main result. Scanning dynamics for T scans, formally

Introduce

C(K , v) = Eσsσt , Correlation function, 0 ≤ s, t ≤ T ,

R(K , v) = EGsσt , Response function, 0 ≤ s, t ≤ T .

Consider an ODE uniquely defining
K (x) ∈ RT×T , v(x) ∈ R× R2 × · · ·RT , x ∈ [0,1] :

dK (x)

dx
= C1:T ,1:T (K (x), v(x))− C0:T−1,1:T−1(K (x), v(x)),

dv(x)

dx
= R1:T ,T (K (x), v(x))− C0:T−1,T−1(K (x), v(x)).
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Consider an ODE uniquely defining
K (x) ∈ RT×T , v(x) ∈ R× R2 × · · ·RT , x ∈ [0,1] :

dK (x)

dx
= C1:T ,1:T (K (x), v(x))− C0:T−1,1:T−1(K (x), v(x)),

dv(x)

dx
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Boundary condition

K (0) =

∫ 1

0
C0:T−1,0:T−1(K (x), v(x))dx ,

v(0) =

∫ 1

0
R0:T−1,T−1(K (x), v(x))dx .

12 / 20



Main result. Scanning dynamics for T scans, formally

Theorem
Fix x1, . . . , xR ∈ [0,1]. Then the distribution of

(σt
xr N ,h

t
xr N ,1 ≤ t ≤ T ,1 ≤ r ≤ R)

weakly−→ (σt
xr ,h

t
xr ,1 ≤ t ≤ T ).

converges to the independent product of
(σt

xr ,h
t
xr ,1 ≤ t ≤ T ),1 ≤ r ≤ R.
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Main result. Scanning dynamics for T scans, formally

Corollary

Let (σt
x ,ht

x ,1 ≤ t ≤ T ) ∈ {±1}T × RT be distributed according
the stochastic process driven by (K (x), v(x)) solving this ODE.
For every ”nice” update function c and (pseudo-Lipschitz) test
function φ : {±1}T × RT → R

lim
N

1
N

∑
1≤i≤N

φ(σt
i ,h

t
i ,1 ≤ t ≤ T ) =

∫ 1

0
Eφ(σt

x ,h
t
x ,1 ≤ t ≤ T )dx .

14 / 20



Dynamics from fixed (warm) starts. Prior art

Physics derivation of equations for Langevin dynamics for
spherical spin glasses. Discovery of ”aging” Cugliandolo
and Kurchan [93]
Rigorous verification of CK equations Ben Arous, Dembo
and Guionnet, [95],[97],[01]

C(s, t) ∼ 1( t
s

) 3
4

, 0 << s << t .

– for large s you need t ≥ s(1/ε)4/3 to get C < ε.
Energy achieved by Langevin dynamics in spherical
models in linear time scale. Sellke [23]
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Dynamics from fixed (warm) starts. Prior art

Dynamics using TAP approach Biroli [99]
Simulations for versions of Greedy (zero temperature) algs
Parisi [03]
MCMC for cliques in random graphs (Erdös-Rényi and
Hidden Clique Model) with empty starting point Chen,
Mossel, Zadik [22]
Gradient descent from complete set for Hidden Clique
Model Gheissari, Jagannath, Yu [23]
Dynamics in Zd from warm start Alaoui, Eldan, Gheissari,
Piana [25]
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Algorithmic implications. Work in progress

Does the Greedy algorithm reach near optimality (ground
state) ηp,Parisi? No for p ≥ 3 in linear time because of the
Overlap Gap Property (OGP).
Near optimal algorithm for p = 2 (Sherrington-Kirkpatrick)
exists, Montanari [19].
No known als for p ≥ 3. OGP, which exists for p = 4,6,8
and all p ≥ 10 implies no near optimal stable algs.
Tight value achievable by stable algs via branching
(ultrametric) OGP, Alaoui, Montanari, Sellke [21], Huang,
Sellke [22].
But Greedy/Glauber are not stable...
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Overlap Gap Property (OGP)

Theorem (Chen, G, Panchenko, Rahman [19], G, Jagannath,
Kizildag [23])

p-spin model exhibits OGP for p = 4,6,8,≥ 10. Specifically,
there exists ηp,OGP < ηp,Parisi s.t. for every σ1, σ2 ∈ {±}N
satisfying H(σ1),H(σ2) ≥ ηp,OGP it holds

1
N
〈σ1, σ2〉 /∈ (ν1, ν2)

for some 0 < ν1 < ν2 < 1.
OGP is an obstruction to stable algs.

18 / 20



OGP is a barrier to sequential dynamics at linear time
scale

Consider smoothed dynamics where τi ∈ [−1,1] using
smooth approximation φ of the sign(x) function. Consider
the implied dynamics τ t ∈ [−1,1]N ,ht ∈ RN .

Theorem (This work)

(a) Suppose J ≈ Ĵ . Then for every T = O(1) (linear time
scale), τT (J) ≈ τT (Ĵ). Namely τT is stable as a function of
disorder J. As a result H(τT ) ≤ ηp,OGP whp.

(b) Suppose φ ≈ sign(x). Then (σT ,hT )
d
≈ (τT ,hT ). Then

H(σT ) ≈ H(τT ) ≤ ηp,OGP - OGP is a barrier to sequential
dynamics at linear time scale.

19 / 20



OGP is a barrier to sequential dynamics at linear time
scale

Consider smoothed dynamics where τi ∈ [−1,1] using
smooth approximation φ of the sign(x) function. Consider
the implied dynamics τ t ∈ [−1,1]N ,ht ∈ RN .

Theorem (This work)
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Questions for future

Analysis beyond linear time. Conjecture: Greedy alg gets
stuck in O(N log N) steps and does not reach ground state
energy
Sparse graphs using the second (cavity) argument which
does not require Gaussian conditioning principle
Glauber dynamics for Number Partitioning Problem.
(Greedy fails Kizildag [25] and gives

√
π/8 vs

exp(−Θ(log2 n)) for the best poly-time alg).
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