Sequential Dynamics in Ising Spin Glasses

David Gamarnik (MIT)

Joint work with
Yatin Dandi, Francisco Pernice and Lenka Zdeborova

August, 2025

1/20



Challenge: characterizing dynamics in random
structures

2/20



Challenge: characterizing dynamics in random
structures

@ Given a random Hamiltonian H(o,R),o € ¥, R encodes
randomness of the model.

2/20



Challenge: characterizing dynamics in random
structures

@ Given a random Hamiltonian H(o,R),o € ¥, R encodes
randomness of the model.

@ Suppose an iterative algorithm A is implemented
sequentially 0! = A(R,01,...,07"),t=1,2,..., with
fixed (random) start ¢°.

2/20



Challenge: characterizing dynamics in random
structures

@ Given a random Hamiltonian H(o,R),o € ¥, R encodes
randomness of the model.

@ Suppose an iterative algorithm A is implemented
sequentially 0! = A(R,01,...,07"),t=1,2,..., with
fixed (random) start ¢°.

@ Examples: Markov Chain Monte Carlo/Glauber dynamics,
Greedy, Simulated Annealing, etc.

2/20



Challenge: characterizing dynamics in random
structures

@ Given a random Hamiltonian H(o,R),o € ¥, R encodes
randomness of the model.

@ Suppose an iterative algorithm A is implemented
sequentially 0! = A(R,01,...,07"),t=1,2,..., with
fixed (random) start o©.

@ Examples: Markov Chain Monte Carlo/Glauber dynamics,
Greedy, Simulated Annealing, etc.

@ Goal: Characterise H(o¢, R) for "large” t.

2/20



Challenge: characterizing dynamics in random
structures

@ Given a random Hamiltonian H(o,R),o € ¥, R encodes
randomness of the model.

@ Suppose an iterative algorithm A is implemented
sequentially 0! = A(R,01,...,07"),t=1,2,..., with
fixed (random) start o©.

@ Examples: Markov Chain Monte Carlo/Glauber dynamics,
Greedy, Simulated Annealing, etc.

@ Goal: Characterise H(o¢, R) for "large” t.

@ Verify that for bounded t, say t = N, where N is model
dimension.

H(ot,R) < max H(o, R)
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Dynamics in spin glasses

@ This work: computing the dynamics H(o¢, R) for spin
glasses, specifically Sherrington-Kirkpatrick (2-body)
N-spin model for linear time scale T = O(N).

@ The remainder of this and next talk:

Model background

Main results

Prior literature

Algorithmic implications

Part Il by Fran Pernice. Proof approaches: (i) Gaussian
conditioning principle (ii) Cavity argument
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symmetric matrix.
@ Sherrington-Kirkpatrick model (2-spin model).

H(o,J) = (o,Jo) = ZJ,IU,UJ, oe {1}V,

H(o,J) = (J,0%P) = Z iy ipOi Ty *** Ty o€ {:I:1}N.

.....

H Q ,,,,, %

@ 0 € RN : ||o|» = N — spherical spin glass.
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Ground states and free energy

Parisi [1980], Talagrand [2006]
@ The limit ground state (Parisi constant)

lim— max H(o,J) = isi
N NJE{:I:}N ( ) Tlp,Parisi

exists and can be computed via PDE.
@ The limit free energy

Ii,r\;n;VIog< Y exp(~BH(o, J))) = f(p, B)
oc{£IN

exists and can be computed via (similar) PDE.
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@ Given o ¢ {1}V define the field at spin / as

hi = hi(c) £ Jjoj.
j#i

@ Note:

H(o) = Z oih;.
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Dynamics. Greedy

Order of updated spins i(f):
(a) i.i.d. uniform random i(t) € [N].
(b) Scanning dynamics: i(1) =1,i(2) =2,...,i(N) =
N, iIN+1)=1,i(N+2)=2,...etc. T scans = TN
updates.
Greedy.
@ Initialize 0(© € {+1}V.
@ Fort=1,2,... update one coordinate i(t) greedily, keep
others the same

Tj(ry = arg max oht = Sign (h!)

o=

a/(t) = a/(t_”, J#i(1).
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Glauber dynamics.
@ Initialize 0(© € {+1}N.
© Fort=1,2,... update one coordinate i(t) randomly, keep
others the same

0 _ . exp(£5h;)
P (Ui(t) - i1> ~ exp(Bh;) + exp(—3h;)

a/m = a/(t_”, J#i(t).

8/20
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Glauber dynamics.
@ Initialize 0(© € {+1}N.
© Fort=1,2,... update one coordinate i(t) randomly, keep
others the same

0 _ . exp(£5h;)
P (Ui(t) - i1> ~ exp(Bh;) + exp(—3h;)

a/m = a/(t_”, J#i(t).

General dynamics: any randomized rule of the form
P(o; = 1) = c(ht) for some fixed function c(-).
c(x) = (1/2)(tanh(8x) + 1) for the Glauber dynamics.
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@ o' € {£1}N —spin configuration at the end of scan
t=1,2,...,T.

@ Fix x € [0,1]. We give a recursive characterization of the
limiting distribution of ((aty, hty) .1 <t < T) for every
constant T

(o Hiy) 1 <0< T) "5 (o ) 1 <t < T,

for a certain r.v. ((of, ht), 1 <t<T) e {£1}T x RT which
we characterize next.

@ Asymptotic expected energy achieved at time TN (after T
scans) satisfies

Im—ZaThT Z / Nkt dx.

t<T
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@ Fixapsd K € R7*T and a sequence of vectors
vieRL1<t<T.

o LetG=(G',...,GT) L N(0,K).

e Define ((o',h"),...,(c7,hT)) € {£1}T x RT recursively
via og = +1 u.a.r. and

ht =G+ (V! (o0,...,01-1)),
ot = c(ht, Ut).

@ Foreach K e R™T v=(vy,...,v7) e RxR? x ---RT we
obtain a stochastic process (¢!(w), hf(w)),1 <t < T.
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Main result. Scanning dynamics for T scans, formally

@ Introduce

C(K,v) = Ec%d, Correlation function, 0 < s, t < T,

R(K,v) = EG%0, Response function, 0 < s, t < T.

@ Consider an ODE uniquely defining
K(x) e R™*T y(x) e R xR? x ---RT x € [0,1] :

dK(x) _ C1.7.1.7(K(x), V(X)) — Co.7—1.1.7-1(K(x), v(x)),

d\;ﬁ(x) = Ry.7,7(K(X), v(X)) — Co.7—1,7—1(K(X), v(X)).
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Boundary condition

1
K©) = [ Cor-ror-1(K (0. vix))ok

1
v(0) = /O Ror—1.7-1(K(X), v(x))dx.
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Main result. Scanning dynamics for T scans, formally

Theorem

Fix x1,...,xg € [0,1]. Then the distribution of

t t weakly t
(UXrN7thN71 S tS T71 S I’S R) — (UX(7

converges to the independent product of
(oL AL, 1<t<T),1<r<R.

1<t<T).




Main result. Scanning dynamics for T scans, formally

Corollary

Let (oL, hl,1 <t<T)e {+1}T x RT be distributed according

the stochastic process driven by (K(x), v(x)) solving this ODE.
For every "nice” update function ¢ and (pseudo-Lipschitz) test

function ¢ : {£1}7 x RT - R

.1 !
"/U”N Z ool A1 <t < T):/0 E¢(ol, ht, 1 <t < T)dx.

1<i<N

v
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@ Physics derivation of equations for Langevin dynamics for
spherical spin glasses. Discovery of "aging” Cugliandolo
and Kurchan [93]

@ Rigorous verification of CK equations Ben Arous, Dembo
and Guionnet, [95],[97],[01]

C(s,t) ~ 13, 0<<s<<t.
3
(s)*
— for large s you need t > s(1/¢)*/3to get C < e.

@ Energy achieved by Langevin dynamics in spherical
models in linear time scale. Sellke [23]
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Dynamics from fixed (warm) starts. Prior art

Dynamics using TAP approach Biroli [99]
Simulations for versions of Greedy (zero temperature) algs
Parisi [03]

MCMC for cligues in random graphs (Erdés-Rényi and
Hidden Clique Model) with empty starting point Chen,
Mossel, Zadik [22]

Gradient descent from complete set for Hidden Clique
Model Gheissari, Jagannath, Yu [23]

Dynamics in Z9 from warm start Alaoui, Eldan, Gheissari,
Piana [25]
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@ Does the Greedy algorithm reach near optimality (ground
state) 7p parisi? NO for p > 3 in linear time because of the
Overlap Gap Property (OGP).

@ Near optimal algorithm for p = 2 (Sherrington-Kirkpatrick)
exists, Montanari [19].

@ No known als for p > 3. OGP, which exists forp = 4,6, 8
and all p > 10 implies no near optimal stable algs.

@ Tight value achievable by stable algs via branching
(ultrametric) OGP, Alaoui, Montanari, Sellke [21], Huang,
Sellke [22].

@ But Greedy/Glauber are not stable...
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Overlap Gap Property (OGP)

Theorem (

)

p-spin model exhibits OGP for p = 4,6,8,> 10. Specifically,
there exists np.ocp < Np,paisi S-1. for every a1, 05 € {£}N
satisfying H(o+), H(o2) > np,ocp it holds

N{1:02) £ (1, 72)

forsome0 < vy < vp < 1.
OGP is an obstruction to stable algs.
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OGP is a barrier to sequential dynamics at linear time
scale

@ Consider smoothed dynamics where 7; € [—-1, 1] using
smooth approximation ¢ of the sign(x) function. Consider
the implied dynamics 7t € [-1,1]N, h € RN.

Theorem (This work)

(a) Suppose J ~ J. Then for every T = O(1) (linear time
scale), 7T (J) ~ 77(J). Namely 7T is stable as a function of
disorder J. As a result H(tT) < npocp Whp.

(b) Suppose ¢ ~ sign(x). Then (o7, hT) < (+T, hT). Then
H(oT) = H(rT) < npocp - OGP is a barrier to sequential
dynamics at linear time scale.
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Questions for future

@ Analysis beyond linear time. Conjecture: Greedy alg gets
stuck in O(N log N) steps and does not reach ground state
energy

@ Sparse graphs using the second (cavity) argument which
does not require Gaussian conditioning principle

@ Glauber dynamics for Number Partitioning Problem.
(Greedy fails Kizildag [25] and gives /7 /8 vs
exp(—O(log? n)) for the best poly-time alg).
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