
Treelike Constant-Time Dynamics for
General First-Order Methods

Chris Jones
(Bocconi University ⮩ UC Davis)

F(x)

1. The problem of effective dynamics
2. Approach via low-degree polynomials
3. Treelike dynamics

Outline

available: [Jones-Pesenti ’25] for GOE setting
in progress: [Gorini-Jones-Kunisky-Pesenti ’25+]

Run the algorithm on the data to iteratively update the model

1. Effective dynamics

Theorist’s view of ML
The three ingredients of machine learning:

3. Training algorithm2. Choice of model to fit
 (e.g. neural network)

1. Training data

State of the algorithm
Input

The algorithm

Theorist’s view of ML

W1 W2

Initially:
 (W1 , W2) ~ random weight matrices

(W1 , W2) follow SGD dynamics on input

Central question: what is the explicit trajectory of (W1 , W2)?

Viewpoint: the model evolves through training as a high-dimensional
dynamical system

1. Effective dynamics

Theorist’s view of ML

1. The input is not worst-case, like in complexity theory
⮩Instead modeled as random / average-case / statistical

 Introduction

>>> The cat takes a nap.
>>> I eat an apple.

2. Model design: the “main” challenge

3. The algorithm is usually a simple
iterative optimization algorithm

Physicist’s view of ML
Physicists have studied dynamical systems of particles for ≥2 years
 Simple interaction rules ⇔ simple iterative algorithm

 Evolution of particles ⇔ algorithm’s trajectory
 Energy minimization ⇔ gradient descent
 Large number of particles (statistical physics) ⇔ large high-dim data, large models

Key physical insight: large random systems exhibit effective dynamics

Effective dynamics metatheorem
As the size of a random, smoothly-interacting dynamical system n→∞, the effect of
individual particles "averages out", so that the dynamical system's trajectory
approximately follows an asymptotic distributional equation

1. Effective dynamics

Effective dynamics

Xt

Effective dynamics metatheorem
As the size of a random, smoothly-interacting dynamical system n→∞, the effect of
individual particles "averages out", so that the dynamical system's trajectory
approximately follows an asymptotic distributional equation

1. Effective dynamics

The problem of effective dynamics

1. (Existence) What assumptions on the algorithm and the
input imply that the algorithm’s state has effective dynamics
Xt as n→∞?

2. (Universality) What parameters of the input characterize Xt?
3. (Calculation and analysis) What is Xt? What is limt→∞ Xt?

1. Effective dynamics

Includes Approximate Message Passing (AMP) algorithms

General First-Order Methods (GFOM)
Iteratively compute xt∈ℝn via two allowed operations (x0= 1):

1. Multiply by A: xt+1 = Axt
2. Apply componentwise nonlinearity:

 xt+1
 = ft(xt, … , x0)

General First-Order Methods (GFOM) [CMW’20]

Input: A∈ℝn x n

[Celentano Montanari Wu ‘20]

Linear operation

Nonlinear
operation

Polynomial GFOM: the

nonlinearities ft are polynomials

1. Effective dynamics

We study existence, universality, and explicit computation of effective
dynamics Xt for GFOM using low-degree polynomial techniques

Results

 Introduction

Theorem [JP’25, GJKP’25+].
Let A∈ℝnxn be an orthogonally-invariant random matrix with ||A|| < O(1).
Let xt∈ℝn be polynomial GFOM iterates, t=O(1), and Et = empirical r.v. of xt.
Then Et → Xt in distribution where Xt is the treelike asymptotic state.
Corollary: new proof of Orthogonal AMP state evolution + derivation of Onsager correction

Theorem-in-progress [GJKP’25+].
Let A∈ℝnxn be the Walsh-Hadamard, discrete sine transform, or discrete
cosine transform matrix (with first row+column deleted). Let xt be polynomial
GFOM iterates, t = O(1). Then Xt exists and matches the regular ROM.

1. The problem of effective dynamics
2. Approach via low-degree polynomials
3. Treelike dynamics

Outline

-

We analyze algorithms by expressing them as multivariate
polynomials in the input A∈ℝn x n

Algorithms as polynomials

Monomials in A∈ℝn x n correspond to graphs on {1,2,...,n}

A12A23A24
A12A23A13+ 2 A12A23A34A45

 2. Low-degree polynomials

Polynomial analysis: a unified approach

 Statistics
Moment method

 Computer science
Low-degree method, trace method

Random matrix theory
Traffic probability

Physics
Feynman diagrams,
tensor networks

 Graph
polynomial
 analysis

 2. Low-degree polynomials

 = ∑n
j,k,L=1 AijAjkAkL + ∑n

j,k,L=1 AijAjkAkL + ∑n
j,k,L=1 AijAjkAkL + ∑n

j,k,L=1 AijAjkAkL + ∑n
j,k,L=1

AijAjkAkL

(x3)i = ∑n
j=1∑

n
k=1∑

n
L=1

AijAjkAkL

Algorithms as polynomials

Warm-up xt = At 1 (matrix power iteration)
Input: A∈ℝn x n

 distinct

i=L

i=k j=L

i=k,j=L

 2. Low-degree polynomials

Graph polynomials

Def: Given a rooted graph α = (V,E), the graph monomial Zα(A) is the
vector in ℝn whose entries are

∑ j=1..n

∑ k=1..n

∑ L=1..n

i

Zα(A)i = ∑φ: V⮩[n] ∏(u,v)∈E Aφ(u)

φ(v)
injective
φ(root)=i

Aij

ALi
AkL

Ajk

j

k

L
 2. Low-degree polynomials

A(A 1)
2
i = ∑n

j=1∑
n

k=1∑
n

L=1 AijAjkAjL

Nonlinear example xt+1 = (A xt)
2 with the square applied componentwise

x0 = 1

Algorithms as polynomials

 2. Low-degree polynomial algorithms

 = ∑n
j,k,L=1 AijAjkAjL + 2∑n

j,k=1 Aij
2Ajk + ∑n

j,k=1 AijAjk
2 + ∑n

j=1 Aij
3

 distinct distinct distinct

Observation: the output xt∈ℝn of a GFOM is
Sn-equivariant ⇒ all monomials with the
same shape have the same coefficient

Input: A∈ℝn x n

Theorem (universality). If xt∈ℝn is a
polynomial GFOM, t=O(1), then xt can be
expressed as a sum of O(1) graph monomials
in A of size O(1).

So, the limiting values of the unrooted connected O(1)-size graph
monomials Zα(A) are sufficient to specify the universality class of
O(1)-time GFOM

⮩Generalizes the limiting spectral density, whose moments are specified
 by the cycle graph monomials

Algorithms as polynomials

 2. Low-degree polynomials

GFOM algorithm
 xt+1 = Axt
or xt+1 = f(xt, …, x0)
applied componentwise

1. The problem of effective dynamics
2. Approach via low-degree polynomials
3. Treelike dynamics

Outline

xt = 2 Z3-path(A) +Ztriangle(A) -10 Zα(A) + Ztriple edge(A) +...

Summary so far

 Key idea: For many random matrices A, only the “treelike”
 graph monomials are asymptotically non-zero random vbls

 3. Treelike dynamics

Given xt generated by GFOM, we express xt in the basis of graph
monomials

To compute dynamics, we should compute the graph monomials for
A and analyze the representation in this basis during the algorithm

Treelike dynamics

Theorem [JP’25, GJKP’25+].
Let A∈ℝnxn be an orthogonally-invariant random matrix with ||A|| < O(1).
Let α be an O(1)-size connected rooted graph. Then the empirical r.v. of Zα

(A) → 0 in distribution unless α is a tree with hanging cactuses.

The remaining empirical r.v.s of Zα(A) converge to order 1 random variables.

Can be interpreted as a generalization of the cavity method
assumption that BP occurs on a tree, generalized from GOE
matrix to orthogonally-invariant random matrices

 3. Treelike dynamics

Tree approximation

Theorem (classification of diagrams). Whp over A ~ N (0, 1/N)NxN,
the following diagrams are order 1 as N⮩∞:

Remove double edge
A(A 1)2 =

 2. Low-degree polynomial algorithms

“hanging” double trees

Furthermore, hanging
double trees can be
asymptotically removed

tree
The remaining diagrams are order 1/√N.

Treelike dynamics

Treelike graph monomials
O(1) magnitude

xt = 2 Z3-path(A) +Ztriangle(A) -10 Zα(A) + Ztriple edge(A) + ...

Non-treelike graph monomials
o(1) error terms

Tracking the evolution of the O(1) component is now much simpler
because the GFOM is occurring on a tree, in a certain sense
 ⮩The treelike asymptotic state follows the evolution of the treelike graph monomials

��

 3. Treelike dynamics

Computing the graph monomials
To run the method, we need to compute the limiting values of all
unrooted connected graph monomials Zα(A) for a given matrix
A∈ℝnxn

Orthogonally-invariant
random matrix
Either:
(1) Weingarten calculus
(2) Feynman diagram
expansion, as in
φ4 matrix model. The
treelike graph monomial
limit is related to the
‘t Hooft limit

GOE/Wigner matrix
Easy exercise

Walsh-Hadamard, DCT,
DST matrix
Extend “fundamental
theorem of graph
monomials” from traffic
probability

 3. Treelike dynamics

1. Compute all of the graph monomials Zα(A) for
unrooted connected graphs α

2. Invert the “moment problem” to obtain empirical r.v.s
i.e. asymptotics of random vectors Zα(A) for rooted graphs α
Are only treelike graphs non-zero?

3. Analyze the algorithm’s trajectory through the
asymptotic probability space

General recipe for effective dynamics

😎YOU ARE NOW IN ASYMPTOTIC SPACE😎

A

 3. Treelike dynamics

Conclusion

● We study the effective dynamics of GFOM using the tool
of graph polynomials

● Natural route for proving existence and universality of
dynamics, connections to physics and free cumulants

● For orthogonally-invariant random matrices, dynamics are
asymptotically treelike

● Treelike dynamics derives the Onsager correction for AMP
algorithms as “backtracking terms”

Thanks for listening!

Why low-degree polynomial algorithms?

Most iterative algorithms and
neural networks use nonlinearities
which are not polynomials

 2. Low-degree polynomial algorithms

…yet in many cases, the
nonlinearities can be
approximated by polynomials

[Image from V7 Labs blog]

Some history

Late 2010s:
development of low-degree likelihood ratio (LDLR)
[Hopkins Steurer ’17] [Hopkins ‘18] [Kunisky Wein Bandeira ‘19]

“Hard” regimes for LDLR match hard phases
predicted by physics (low-degree conjecture)

 2. Low-degree polynomial algorithms

Low-degree algorithms: output = low-degree poly(input) Low-degree ≈
O(1) or O(log n)

Thinking about the class of low-degree
algorithms originates from the
Sum-of-Squares algorithm [Lasserre ‘01]

The “SoS hierarchy” is also
called the “Lasserre hierarchy”

Some history

This work: use Fourier analytic technology to analyze
iterative algorithms including GFOM and BP/AMP

Development of Fourier analysis for Sum-of-Squares algorithms
[BHKKMP’19, AMP’20, GJJPR’20, JPRTX’21, PR’22, JP’22, RT’23, JPRX’23, KPX’24]

Ahn
Ghosh
Jeronimo
Jones
Kothari
Medarametla
Potechin
Rajendran
Tulsiani
Xu

 2. Low-degree polynomial algorithms
[Barak Hopkins Kelner Kothari
Moitra Potechin ’19]

Tree approximation

 2. Low-degree polynomial algorithms

Wait, it’s all
Gaussians?

Always has been

Central Limit
Theorem

