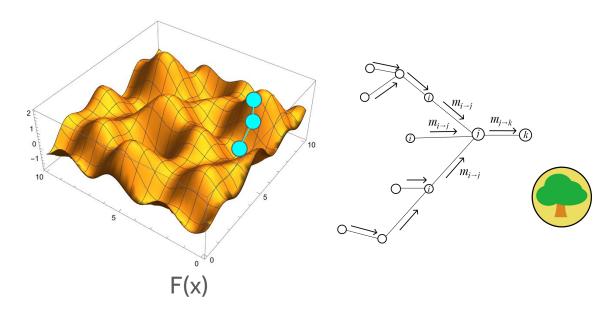
Treelike Constant-Time Dynamics for General First-Order Methods



Chris Jones (Bocconi University □ UC Davis)

Outline

- 1. The problem of effective dynamics
- 2. Approach via low-degree polynomials
- 3. Treelike dynamics

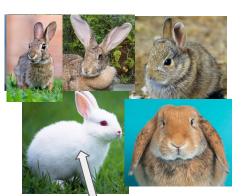
available: [Jones-Pesenti '25] for GOE setting

in progress: [Gorini-Jones-Kunisky-Pesenti '25+]

Theorist's view of ML

The three ingredients of machine learning:

1. Training data

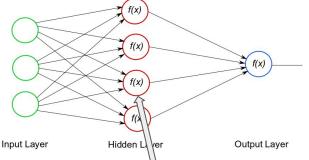


Ru

Input

2. Choice of model to fit (e.g. neural network)

3. Training algorithm



$$\mathbf{\Theta}^{t+1} = \mathbf{\Theta}^t - lpha
abla F(\mathbf{\Theta}^t), \ \ t \geq 0$$
 $F(\mathbf{\Theta}) = rac{1}{2} \sum_{i=1}^N (\langle \mathbf{y}_i, \mathbf{\Theta}
angle - y_i)^2$

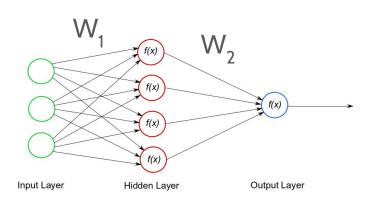
The algorithm

gorithm on the data to itelatively update the model

State of the algorithm

Theorist's view of ML

Viewpoint: the model evolves through training as a high-dimensional dynamical system



Initially:

 (W_1, W_2) ~ random weight matrices

$$egin{aligned} oldsymbol{\Theta}^{t+1} &= oldsymbol{\Theta}^t - lpha
abla F(oldsymbol{\Theta}^t), \;\; t \geq 0 \ F(oldsymbol{\Theta}) &= rac{1}{2} \sum_{i=1}^N (\langle \mathbf{x}_i, oldsymbol{\Theta}
angle - y_i)^2 \end{aligned}$$

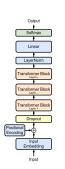
(W₁, W₂) follow SGD dynamics on input

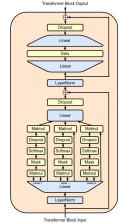
Central question: what is the explicit trajectory of (W₁, W₂)?

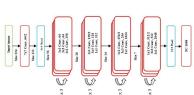
Theorist's view of ML

- 1. The input is **not** worst-case, like in complexity theory
 - ☐ Instead modeled as random / average-case / statistical

3. The algorithm is usually a simple iterative optimization algorithm







Physicist's view of ML

Physicists have studied dynamical systems of particles for ≥2 years

```
Simple interaction rules ⇔ simple iterative algorithm

Evolution of particles ⇔ algorithm's trajectory

Energy minimization ⇔ gradient descent
```

Large number of particles (statistical physics) ⇔ large high-dim data, large models

Key physical insight: large random systems exhibit effective dynamics

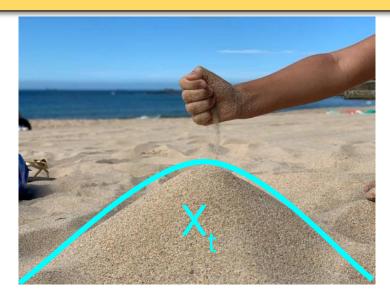
Effective dynamics metatheorem

As the size of a random, smoothly-interacting dynamical system $n\to\infty$, the effect of individual particles "averages out", so that the dynamical system's trajectory approximately follows an asymptotic distributional equation

Effective dynamics

Effective dynamics metatheorem

As the size of a random, smoothly-interacting dynamical system $n\to\infty$, the effect of individual particles "averages out", so that the dynamical system's trajectory approximately follows an asymptotic distributional equation



Effective dynamics

The problem of effective dynamics

- (Existence) What assumptions on the algorithm and the input imply that the algorithm's state has effective dynamics X₁ as n→∞?
- 2. (Universality) What parameters of the input characterize X_t ?
- 3. (Calculation and analysis) What is X_t ? What is $\lim_{t\to\infty} X_t$?

General First-Order Methods (GFOM) [CMW'20]

Input: A∈R^{n×n}

General First-Order Methods (GFOM)

Iteratively compute $\mathbf{x}_t \in \mathbb{R}^n$ via two allowed operations ($\mathbf{x}_0 = 1$):

- 1. Multiply by A: $x_{t+1} = Ax_t$
- 2. Apply componentwise nonlinearity:

$$x_{t+1} = f_t(x_t, ..., x_0)$$

Linear operation

Nonlinear operation

Includes Approximate Message Passing (AMP)

Polynomial GFOM: the nonlinearities f_{t} are polynomials

Results

We study existence, universality, and explicit computation of effective dynamics X_t for GFOM using low-degree polynomial techniques

Theorem [JP'25, GJKP'25+].

Let $A \in \mathbb{R}^{n \times n}$ be an orthogonally-invariant random matrix with ||A|| < O(1). Let $\mathbf{x}_t \in \mathbb{R}^n$ be polynomial GFOM iterates, t=O(1), and \mathbf{E}_t = empirical r.v. of \mathbf{x}_t . Then $\mathbf{E}_t \to \mathbf{X}_t$ in distribution where \mathbf{X}_t is the treelike asymptotic state.

Corollary: new proof of Orthogonal AMP state evolution + derivation of Onsager correction

Theorem-in-progress [GJKP'25+].

Let $A \in \mathbb{R}^{n \times n}$ be the Walsh-Hadamard, discrete sine transform, or discrete cosine transform matrix (with first row+column deleted). Let \mathbf{x}_t be polynomial GFOM iterates, t = O(1). Then \mathbf{X}_t exists and matches the regular ROM.

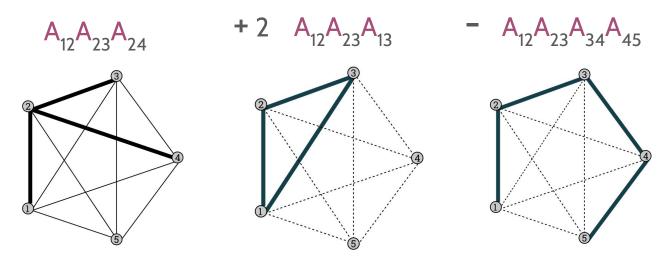
Outline

- 1. The problem of effective dynamics
- 2. Approach via low-degree polynomials
- 3. Treelike dynamics

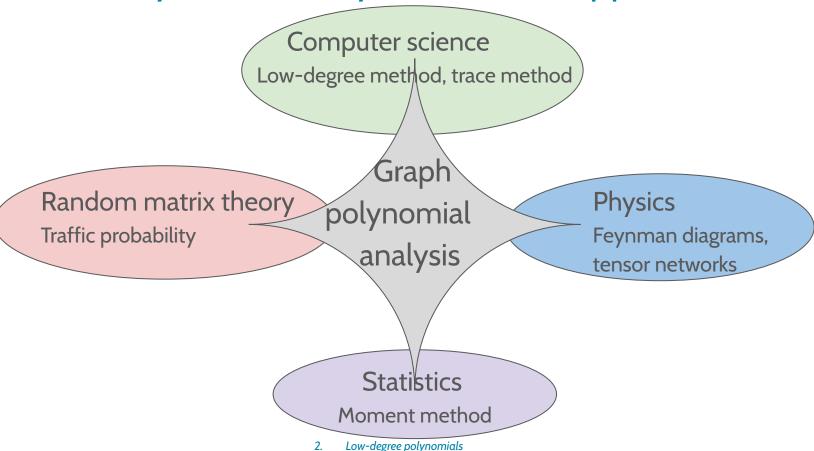
Algorithms as polynomials

We analyze algorithms by expressing them as multivariate polynomials in the input $A \subseteq \mathbb{R}^{n \times n}$

Monomials in $A \subseteq \mathbb{R}^{n \times n}$ correspond to graphs on $\{1,2,...,n\}$



Polynomial analysis: a unified approach



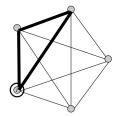
Algorithms as polynomials

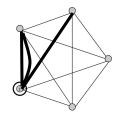
Input: A∈R^{n×n}

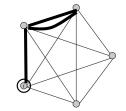
<u>Warm-up</u> $\mathbf{x}_{t} = \mathbf{A}^{t} \mathbf{1}$ (matrix power iteration)

$$(x_3)_i = \sum_{j=1}^n \sum_{k=1}^n \sum_{L=1}^n$$

$$\begin{array}{c} A_{ij}A_{jk}A_{kL} \\ A_{ij}A_{jk}A_{kL} \end{array} = \begin{array}{c} A_{ij}A_{jk}A_{kL} + \sum_{j=1}^{n} A_{ij}A_{jk}A_{kL} + \sum_{i=k}^{n} A_{ij}A_{jk}A_{kL} + \sum_{j=k}^{n} A_{ij}A_{jk}A_{kL} + \sum_{i=k,j=k}^{n} A_{ij}A_{jk}A_{kL} + \sum_{i=k,j=k}^{n} A_{ij}A_{jk}A_{kL} + \sum_{i=k,j=k}^{n} A_{ij}A_{jk}A_{kL} + \sum_{i=k,j=k}^{n} A_{ij}A_{$$



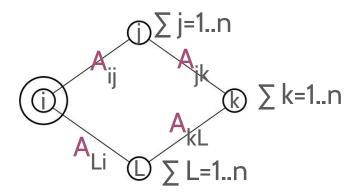




Graph polynomials

Def: Given a rooted graph $\alpha = (V,E)$, the graph monomial $Z^{\alpha}(A)$ is the vector in \mathbb{R}^n whose entries are

$$Z^{\alpha}(A)_{i} = \sum_{\substack{\phi: \ V \supseteq [n]}} \prod_{\substack{(u,v) \in E}} A_{\phi(u)}$$
 $\phi(v)$



. Low-degree polynomials

Algorithms as polynomials

Input: A∈R^{n×n}

Nonlinear example $\mathbf{x}_{t+1} = (\mathbf{A} \mathbf{x}_t)^2$ with the square applied componentwise $\mathbf{x}_0 = \mathbf{1}$

$$A(A \overline{1})^{2}_{i} = \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{L=1}^{n} A_{ij} A_{jk} A_{jL}$$

$$= \sum_{j,k,L=1}^{n} A_{ij} A_{jk} A_{jL} + 2\sum_{j,k=1}^{n} A_{ij}^{2} A_{jk} + \sum_{j,k=1}^{n} A_{ij}^{3} A_{jk}^{2} + \sum_{j=1}^{n} A_{ij}^{3}$$

$$= \sum_{j,k,L=1}^{n} A_{ij} A_{jk} A_{jL} + 2\sum_{j,k=1}^{n} A_{ij}^{2} A_{jk} + \sum_{j,k=1}^{n} A_{ij}^{3} A_{jk}^{2} + \sum_{j=1}^{n} A_{ij}^{3}$$

Observation: the output $\mathbf{x}_t \in \mathbb{R}^n$ of a GFOM is S_n -equivariant \Rightarrow all monomials with the same shape have the same coefficient

Algorithms as polynomials

Theorem (universality). If $\mathbf{x}_t \in \mathbb{R}^n$ is a polynomial GFOM, t=O(1), then \mathbf{x}_t can be expressed as a sum of O(1) graph monomials in A of size O(1).

GFOM algorithm

$$\mathbf{x}_{t+1} = A\mathbf{x}_{t}$$

or $\mathbf{x}_{t+1} = f(\mathbf{x}_{t}, ..., \mathbf{x}_{0})$
applied componentwise

So, the limiting values of the unrooted connected O(1)-size graph monomials $\frac{1}{n}Z^{\alpha}(A)$ are sufficient to specify the universality class of O(1)-time GFOM

Generalizes the limiting spectral density, whose moments are specified by the cycle graph monomials

Outline

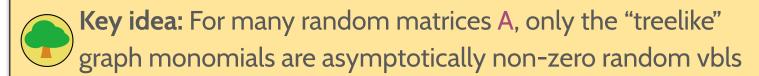
- 1. The problem of effective dynamics
- 2. Approach via low-degree polynomials
- 3. Treelike dynamics

Summary so far

Given \mathbf{x}_t generated by GFOM, we express \mathbf{x}_t in the basis of graph monomials

$$\mathbf{X}_{t} = 2 Z^{3-\text{path}}(\mathbf{A})$$
 + $Z^{\text{triangle}}(\mathbf{A})$ -10 $Z^{\alpha}(\mathbf{A})$ + $Z^{\text{triple edge}}(\mathbf{A})$ +...

To compute dynamics, we should compute the graph monomials for A and analyze the representation in this basis during the algorithm



Treelike dynamics

Theorem [JP'25, GJKP'25+].

Let $A \subseteq \mathbb{R}^{n \times n}$ be an orthogonally-invariant random matrix with ||A|| < O(1).

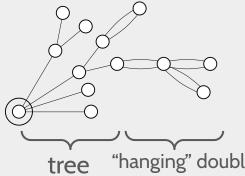
Let α be an O(1)-size connected rooted graph. Then the empirical r.v. of Z^{α} (A) \rightarrow O in distribution unless α is a tree with hanging cactuses.

The remaining empirical r.v.s of $Z^{\alpha}(A)$ converge to order 1 random variables.

Can be interpreted as a generalization of the cavity method assumption that BP occurs on a tree, generalized from GOE matrix to orthogonally-invariant random matrices

Tree approximation

Theorem (classification of diagrams). Whp over $A \sim \mathcal{N}(0, 1/N)^{N\times N}$, the following diagrams are order 1 as $N \square \infty$:



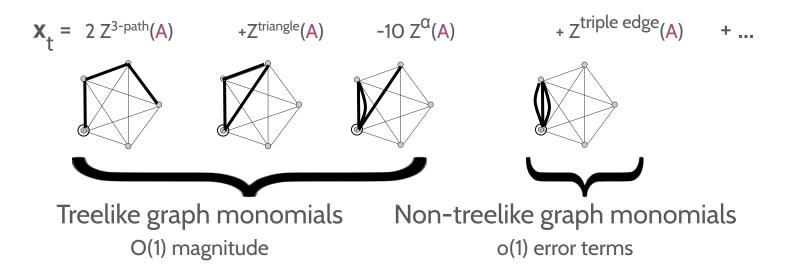
Furthermore, hanging double trees can be asymptotically removed

"hanging" double trees

The remaining diagrams are order $1/\sqrt{N}$.

A(A 1)² =
$$\bigcirc$$
 +2 \bigcirc Remove double edge

Treelike dynamics



Tracking the evolution of the O(1) component is now much simpler because the GFOM is occurring on a tree, in a certain sense

☐ The treelike asymptotic state follows the evolution of the treelike graph monomials

Computing the graph monomials

To run the method, we need to compute the limiting values of all unrooted connected graph monomials $\frac{1}{n}Z^{\alpha}(A)$ for a given matrix

GOE/Wigner matrix
Easy exercise

Orthogonally-invariant random matrix Either: (1) Weingarten calculus (2) Feynman diagram expansion, as in ϕ^4 matrix model. The treelike graph monomial limit is related to the 't Hooft limit

Walsh-Hadamard, DCT, DST matrix

Extend "fundamental theorem of graph monomials" from traffic probability

Treelike dynamics

General recipe for effective dynamics

- 1. Compute all of the graph monomials $\frac{1}{n}Z^{\alpha}(A)$ for unrooted connected graphs α
- 2. Invert the "moment problem" to obtain empirical r.v.s i.e. asymptotics of random vectors $Z^{\alpha}(A)$ for rooted graphs α Are only treelike graphs non-zero?

YOU ARE NOW IN ASYMPTOTIC SPACE

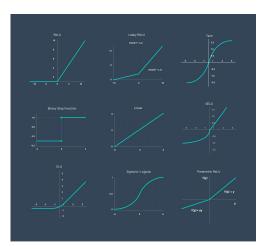
3. Analyze the algorithm's trajectory through the asymptotic probability space

Conclusion

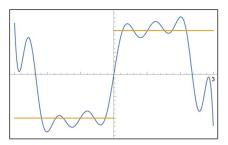
- We study the effective dynamics of GFOM using the tool of graph polynomials
- Natural route for proving existence and universality of dynamics, connections to physics and free cumulants
- For orthogonally-invariant random matrices, dynamics are asymptotically treelike
- Treelike dynamics derives the Onsager correction for AMP algorithms as "backtracking terms"

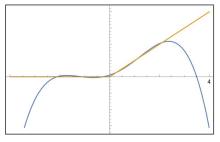
Thanks for listening!

Why low-degree polynomial algorithms?



Most iterative algorithms and neural networks use nonlinearities which are not polynomials





...yet in many cases, the nonlinearities can be approximated by polynomials

Some history

Low-degree algorithms: output = low-degree poly(input)

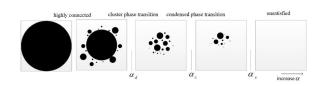
Low-degree ≈ O(1) or O(log n)

Late 2010s:

development of low-degree likelihood ratio (LDLR)
[Hopkins Steurer '17] [Hopkins '18] [Kunisky Wein Bandeira '19]

$$\max_{T \text{ deg } D} rac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{O}}[f(Y)^2]}}$$

"Hard" regimes for LDLR match hard phases predicted by physics (low-degree conjecture)



Some history

Thinking about the class of low-degree algorithms originates from the Sum-of-Squares algorithm [Lasserre 'O1]

The "SoS hierarchy" is also called the "Lasserre hierarchy"

Development of Fourier analysis for Sum-of-Squares algorithms [BHKKMP'19, AMP'20, GJJPR'20, JPRTX'21, PR'22, JP'22, RT'23, JPRX'23, KPX'24]

This work: use Fourier analytic technology to analyze iterative algorithms including GFOM and BP/AMP

Ahn
Ghosh
Jeronimo
Jones
Kothari
Medarametla
Potechin
Rajendran
Tulsiani
Xu

[Barak Hopkins Kelner Kothari Moitra Potechin '19]

Tree approximation

