Average-case matrix discrepancy, large deviations, and the HCIZ integral

Antoine Maillard

(mría-

arXiv:2410.17887

w. J-C Mourrat (ENS Lyon)

Cargèse – August 2025

Part I : Average-case matrix discrepancy

1

"Balancing vectors": Given $u_1, \cdots, u_n \in \mathbb{R}^d$, find $\varepsilon_1, \cdots, \varepsilon_n = \pm 1$ to make the "balancing" $\sum_{i=1}^n \varepsilon_i u_i$ small

Discrepancy
$$\operatorname{disc}(u_1, \cdots, u_n) \coloneqq \min_{\varepsilon \in \{\pm 1\}^n} \left\| \sum_{i=1}^n \varepsilon_i u_i \right\|_{\infty}$$

1

Discrepancy: balancing vectors in high dimension

"Balancing vectors": Given $u_1,\cdots,u_n\in\mathbb{R}^d$, find $\varepsilon_1,\cdots,\varepsilon_n=\pm 1$ to make the "balancing" $\sum \varepsilon_i u_i$ small

Discrepancy
$$\operatorname{disc}(u_1, \cdots, u_n) \coloneqq \min_{\varepsilon \in \{\pm 1\}^n} \left\| \sum_{i=1}^n \varepsilon_i u_i \right\|_{\infty}$$

Discrepancy theory

For large $n,d\gg 1$, and some assumptions on $\{u_i\}_{i=1}^n$, can we compute/upper bound $\mathrm{disc}(u_1,\cdots,u_n)$

Applications & motivations: Combinatorics, perceptron-type problems, computational geometry, experimental design, randomized clinical trials, theory of approximation algorithms, ...

Matousek '09; Chen&al '14; talks of Dan Spielman,...

Discrepancy
$$\operatorname{disc}(u_1, \cdots, u_n) \coloneqq \min_{\varepsilon \in \{\pm 1\}^n} \left\| \sum_{i=1}^n \varepsilon_i u_i \right\|_{\infty}$$

Discrepancy theory

For large $n,d\gg 1$, and some assumptions on $\{u_i\}_{i=1}^n$, can we **compute/upper bound** $\mathrm{disc}(u_1,\cdots,u_n)$

Applications & motivations: Combinatorics, perceptron-type problems, computational geometry, Matousek '09; Chen&al '14; experimental design, randomized clinical trials, theory of approximation algorithms, ...

talks of Dan Spielman,...

General discrepancy problem

$$\operatorname{disc}(u_1, \cdots, u_n) \coloneqq \min_{\varepsilon \in \{\pm 1\}^n} \left\| \sum_{i=1}^n \varepsilon_i u_i \right\|_{\infty} \longrightarrow \left(\operatorname{disc}(x_1, \cdots, x_n) \coloneqq \min_{\varepsilon \in \{\pm 1\}^n} \left\| \sum_{i=1}^n \varepsilon_i x_i \right\| \right)$$

Matrix setting of the general discrepancy problem

$\min_{\varepsilon \in \{\pm 1\}^n} \left\| \sum_{i=1}^n \varepsilon_i x_i \right\|$

Matrix setting of the general discrepancy problem

 $x_i = \mathbf{A}_i \in \mathbb{R}^{d \times d} \ (\mathbf{A}_i = \mathbf{A}_i^\top)$ $\| \cdot \| = \| \cdot \|_{\text{op}} \coloneqq \max\{|\lambda_i(\mathbf{A})|\}$

Matrix discrepancy

$$\operatorname{disc}(\mathbf{A}_1,\cdots,\mathbf{A}_n)\coloneqq \min_{\varepsilon\in\{\pm 1\}^n}\left\|\sum_{i=1}^n\varepsilon_i\mathbf{A}_i\right\|_{\mathrm{con}}$$

Applications and connections to matrix concentration inequalities, quantum random access codes, graph sparsification, ...

Hopkins&al '22; Bansal&al '23; Batson&al '14; Cai&al '25...

 $\min_{\varepsilon \in \{\pm 1\}^n} \left\| \sum_{i=1}^n \varepsilon_i x_i \right\|$

Matrix setting of the general discrepancy problem

 $x_i = \mathbf{A}_i \in \mathbb{R}^{d \times d} \ (\mathbf{A}_i = \mathbf{A}_i^\top)$ $\|\cdot\| = \|\cdot\|_{\text{op}} \coloneqq \max\{|\lambda_i(\mathbf{A})|\}$

Matrix discrepancy

$$\operatorname{disc}(\mathbf{A}_1,\cdots,\mathbf{A}_n)\coloneqq \min_{arepsilon\in\{\pm1\}^n}\left\|\sum_{i=1}^narepsilon_i\mathbf{A}_i\right\|_{\operatorname{op}}$$

Applications and connections to matrix concentration inequalities, quantum random access codes, graph sparsification, ...

Hopkins&al'22; Bansal&al'23; Batson&al'14; Cai&al'25...

• Special case:
$$\mathbf{A}_i = \mathrm{Diag}(u_i)$$

$$\|\cdot\|_{\infty}$$

Vector discrepancy with
$$\|\cdot\|_{\infty}$$
 $\min_{\varepsilon\in\{\pm 1\}^n} \left\|\sum_{i=1}^n \varepsilon_i u_i\right\|_{\infty}$

$$\min_{\{\pm 1\}^n} \left\| \sum_{i=1}^n \varepsilon_i x_i \right\|$$

Matrix setting of the general discrepancy problem

 $x_i = \mathbf{A}_i \in \mathbb{R}^{d \times d} \ (\mathbf{A}_i = \mathbf{A}_i^\top)$ $\|\cdot\| = \|\cdot\|_{\text{op}} := \max\{|\lambda_i(\mathbf{A})|\}$

Matrix discrepancy

$$\operatorname{disc}(\mathbf{A}_1,\cdots,\mathbf{A}_n)\coloneqq\min_{arepsilon\in\{\pm 1\}^n}\left\|\sum_{i=1}^narepsilon_i\mathbf{A}_i\right\|_{\operatorname{cm}}$$

Applications and connections to matrix concentration inequalities, quantum random access codes, graph sparsification, ...

Hopkins&al'22; Bansal&al'23; Batson&al'14; Cai&al'25...

Special case: $\mathbf{A}_i = \mathrm{Diag}(u_i)$

$$\|\cdot\|_{\infty}$$

Vector discrepancy with
$$\|\cdot\|_{\infty}$$
 $\min_{\varepsilon\in\{\pm 1\}^n} \left\|\sum_{i=1}^n \varepsilon_i u_i\right\|_{\varepsilon}$

"Matrix Spencer" conjecture

Many open questions, e.g.

 $\max_{\|\mathbf{A}_i\|_{\mathrm{op}} \leq 1} \mathrm{disc}(\mathbf{A}_1,\cdots,\mathbf{A}_n) \lesssim \sqrt{n}$ Proven for vector discrepancy by

Zouzias '12; Meka'14; Bandeira&al '23: Bansal&al'23: ...

What about random matrices?

[Kunisky & Zhang '23; Wengiel '24]

[Kunisky & Zhang '23; Wengiel '24]

Matrix analog of...

$$\mathbf{W}_i = \mathrm{Diag}(w_i)$$
$$(g_i)_j \coloneqq (w_j)_i$$

Symmetric Binary Perceptron

Given $g_1,\cdots,g_d \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0,\mathrm{I}_n)$, can we find $\varepsilon \in \{\pm 1\}^n$ such that $\max_{i \in [d]} |\langle g_i, \varepsilon \rangle| \leq \kappa \sqrt{n}$

Aubin&al '19; Abbe&al '22; Gamarnik&al '22; ...

[Kunisky & Zhang '23; Wengiel '24]

Matrix analog of...

$$\mathbf{W}_i = \mathrm{Diag}(w_i)$$
$$(g_i)_j \coloneqq (w_j)_i$$

Symmetric Binary Perceptron

Given $g_1,\cdots,g_d \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0,\mathrm{I}_n)$, can we find $\varepsilon \in \{\pm 1\}^n$ such that $\max_{i \in [d]} |\langle g_i, \varepsilon \rangle| \leq \kappa \sqrt{n}$

Aubin&al '19; Abbe&al '22; Gamarnik&al '22; ...

Goals

- Sharp satisfiability transitions (in the regime $n = \Theta(d^2)$)?
- Structure of solution space?
- Polynomial-time algorithms?
 - [Kunisky & Zhang '23]
- \triangleright More complex models of \mathbf{W}_i ?

[Kunisky & Zhang '23; Wengiel '24]

Matrix analog of...

$$\mathbf{W}_i = \mathrm{Diag}(w_i)$$
$$(g_i)_j \coloneqq (w_j)_i$$

Symmetric Binary Perceptron

Given $g_1,\cdots,g_d \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0,\mathrm{I}_n)$, can we find $\varepsilon \in \{\pm 1\}^n$ such that $\max_{i \in [d]} |\langle g_i, \varepsilon \rangle| \leq \kappa \sqrt{n}$

Aubin&al '19; Abbe&al '22; Gamarnik&al '22; ...

This talk > Sharp satisfiability transitions (in the regime $n = \Theta(d^2)$)?

Goals

- Structure of solution space ?
- Polynomial-time algorithms? [Kunisky & Zhang '23]
- \triangleright More complex models of \mathbf{W}_i ?

Results I: first moment asymptotics

Results I: first moment asymptotics

 $n/d^2 \to \tau > 0$

Number of solutions / Partition function

$$Z_{\kappa} \coloneqq \# \left\{ \varepsilon \in \{\pm 1\}^n \text{ s.t. } \left\| \sum_{i=1}^n \varepsilon_i \mathbf{W}_i \right\|_{\text{op}} \le \kappa \sqrt{n} \right\}$$

Results I: first moment asymptotics

 $n/d^2 \to \tau > 0$

Number of solutions / Partition function

$$Z_{\kappa} := \# \left\{ \varepsilon \in \{\pm 1\}^n \text{ s.t. } \left\| \sum_{i=1}^n \varepsilon_i \mathbf{W}_i \right\|_{\text{op}} \le \kappa \sqrt{n} \right\}$$

Theorem: $\lim_{d\to\infty} \frac{1}{d^2} \log \mathbb{E} Z_{\kappa} = (\tau - \tau_1(\kappa)) \log 2$

$$\tau_1(\kappa) \coloneqq \frac{1}{\log 2} \left[-\frac{\kappa^4}{128} + \frac{\kappa^2}{8} - \frac{1}{2} \log \frac{\kappa}{2} - \frac{3}{8} \right]$$

$$\mathbf{W} \sim \mathrm{GOE}(d)$$

$$\mathbb{E} Z_{\kappa} = \sum_{\varepsilon \in \{\pm 1\}^n} \mathbb{P} \left[\left\| \sum_{i=1}^n \varepsilon_i \mathbf{W}_i \right\|_{\text{op}} \le \kappa \sqrt{n} \right] = 2^n \, \mathbb{P}[\|\mathbf{W}\|_{\text{op}} \le \kappa]$$

$$\mathbb{E} Z_{\kappa} = \sum_{\varepsilon \in \{\pm 1\}^n} \mathbb{P} \left[\left\| \sum_{i=1}^n \varepsilon_i \mathbf{W}_i \right\|_{\operatorname{op}} \le \kappa \sqrt{n} \right] = 2^n \, \mathbb{P}[\|\mathbf{W}\|_{\operatorname{op}} \le \kappa] \quad \longrightarrow \quad \text{Left ($\kappa < 2$) large deviations of } \|\mathbf{W}\|_{\operatorname{op}} \le \kappa \sqrt{n} \right]$$

$$\mathbb{E} Z_{\kappa} = \sum_{\varepsilon \in \{\pm 1\}^n} \mathbb{P} \left[\left\| \sum_{i=1}^n \varepsilon_i \mathbf{W}_i \right\|_{\mathrm{op}} \le \kappa \sqrt{n} \right] = 2^n \, \mathbb{P}[\|\mathbf{W}\|_{\mathrm{op}} \le \kappa] \quad \Longrightarrow \quad \text{Left (} \kappa < 2 \text{) large deviations of } \|\mathbf{W}\|_{\mathrm{op}} \le \kappa \sqrt{n} \right]$$

ldea: The event $\|\mathbf{W}\|_{\mathrm{op}} \leq \kappa$ is driven by

 $I(\mu) := -\frac{1}{2} \int \mu(\mathrm{d}x) \mu(\mathrm{d}y) \log|x - y| + \frac{1}{4} \int \mu(\mathrm{d}x) x^2 - \frac{3}{8}$

$$\mathbb{P}[\mu_{\mathbf{W}} \simeq \mu] \simeq \exp\{-d^2I(\mu)\} \quad \text{Ben Arous \& Guionnet '97;} \\ \quad \text{Dean\&Majumdar '06 '08;}$$

$$\mathbb{E} Z_{\kappa} = \sum_{\varepsilon \in \{\pm 1\}^n} \mathbb{P} \left[\left\| \sum_{i=1}^n \varepsilon_i \mathbf{W}_i \right\|_{\mathrm{op}} \le \kappa \sqrt{n} \right] = 2^n \, \mathbb{P}[\|\mathbf{W}\|_{\mathrm{op}} \le \kappa] \quad \Longrightarrow \quad \text{Left (} \kappa < 2 \text{) large deviations of } \|\mathbf{W}\|_{\mathrm{op}} \le \kappa \sqrt{n} \right]$$

lacktriangle Idea: The event $\|\mathbf{W}\|_{\mathrm{op}} \leq \kappa$ is driven by

 $I(\mu) := -\frac{1}{2} \int \mu(dx) \mu(dy) \log|x - y| + \frac{1}{4} \int \mu(dx) x^2 - \frac{3}{8}$

Large deviations of the spectral density

$$\mathbb{P}[\mu_{\mathbf{W}} \simeq \mu] \simeq \exp\{-d^2I(\mu)\} \quad \text{Ben Arous \& Guionnet '97;} \\ \quad \text{Dean\&Majumdar '06 '08;}$$

$$\lim \frac{1}{d^2} \log \mathbb{P}[\|\mathbf{W}\|_{\text{op}} \le \kappa] = -\inf_{\mu \in \mathcal{M}([-\kappa, \kappa])} I(\mu)$$

$$\mathbb{E} Z_{\kappa} = \sum_{\varepsilon \in \{\pm 1\}^n} \mathbb{P} \left[\left\| \sum_{i=1}^n \varepsilon_i \mathbf{W}_i \right\|_{\mathrm{op}} \le \kappa \sqrt{n} \right] = 2^n \, \mathbb{P}[\|\mathbf{W}\|_{\mathrm{op}} \le \kappa] \quad \Longrightarrow \quad \text{Left ($\kappa < 2$) large deviations of } \|\mathbf{W}\|_{\mathrm{op}} \le \kappa \sqrt{n} \right]$$

ightharpoonup Idea: The event $\|\mathbf{W}\|_{\mathrm{op}} \leq \kappa$ is driven by

Large deviations of the spectral density

$$\mathbb{P}[\mu_{\mathbf{W}} \simeq \mu] \simeq \exp\{-d^2I(\mu)\} \quad \text{Ben Arous \& Guionnet '97;} \\ \quad \text{Dean\&Majumdar '06 '08;}$$

$$\lim \frac{1}{d^2} \log \mathbb{P}[\|\mathbf{W}\|_{\text{op}} \le \kappa] = -\inf_{\mu \in \mathcal{M}([-\kappa,\kappa])} I(\mu)$$

ightharpoonup Compute $\inf_{\mu\in\mathcal{M}([-\kappa,\kappa])}I(\mu)$ from **Tricomi's theorem**

Tricomi' 85; Dean&Majumdar '06 '08; Vivo&al '07, ...

$$I(\mu) := -\frac{1}{2} \int \mu(dx) \mu(dy) \log|x - y| + \frac{1}{4} \int \mu(dx) x^2 - \frac{3}{8}$$

Results II: Upper bounds via the second moment method

$Z_{\kappa} := \# \left\{ \varepsilon \in \{\pm 1\}^n \text{ s.t. } \left\| \sum_{i=1}^n \varepsilon_i \mathbf{W}_i \right\|_{\text{op}} \le \kappa \sqrt{n} \right\}$

 $\mu(\{\mathbf{W}\}) \coloneqq \frac{1}{d} \sum_{i=1}^{d} \delta_{\lambda_i(\mathbf{W})}$

$$\mu(\{\mathbf{W}\}) \coloneqq \frac{1}{d} \sum_{i=1}^{d} \delta_{\lambda_i(\mathbf{W})}$$

 $\mu(\{\mathbf{W}\}) \coloneqq \frac{1}{d} \sum_{i=1}^{d} \delta_{\lambda_i(\mathbf{W})}$

- $\underline{\mathbf{2^{nd}\ moment:}}\ \mathbb{E}[Z_{\kappa}^2] \iff G(\kappa,q) \coloneqq -\frac{1}{d^2} \log \mathbb{P}[\|\mathbf{W}\|_{\mathrm{op}} \leq \kappa \text{ and } \|q\mathbf{W} + \sqrt{1-q^2}\mathbf{Z}\|_{\mathrm{op}} \leq \kappa] \qquad (\mathbf{W},\mathbf{Z} \sim \mathrm{GOE}(d))$ $q \in [0,1]$ "overlap"

$$\mu(\{\mathbf{W}\}) \coloneqq \frac{1}{d} \sum_{i=1}^{d} \delta_{\lambda_i(\mathbf{W})}$$

 $\underline{\mathbf{2^{nd}\ moment:}}\ \mathbb{E}[Z_{\kappa}^2] \iff G(\kappa,q) \coloneqq -\frac{1}{d^2} \log \mathbb{P}[\|\mathbf{W}\|_{\mathrm{op}} \le \kappa \text{ and } \|q\mathbf{W} + \sqrt{1-q^2}\mathbf{Z}\|_{\mathrm{op}} \le \kappa] \qquad (\mathbf{W},\mathbf{Z} \sim \mathrm{GOE}(d))$ $q \in [0,1]$ "overlap"

Large deviations of the spectra of **correlated** GOE(d) matrices.

$$\mu(\{\mathbf{W}\}) \coloneqq \frac{1}{d} \sum_{i=1}^{d} \delta_{\lambda_i(\mathbf{W})}$$

 $\underline{\mathbf{2^{nd}\ moment:}}\ \mathbb{E}[Z_{\kappa}^2] \iff G(\kappa,q) \coloneqq -\frac{1}{d^2} \log \mathbb{P}[\|\mathbf{W}\|_{\mathrm{op}} \leq \kappa \ \mathrm{and} \ \|q\mathbf{W} + \sqrt{1-q^2}\mathbf{Z}\|_{\mathrm{op}} \leq \kappa] \qquad (\mathbf{W},\mathbf{Z} \sim \mathrm{GOE}(d))$ $q \in [0,1]$ "overlap"

Large deviations of the spectra of **correlated** GOE(d) matrices.

Our proof gives an **upper bound** on $G(\kappa, q)$, using tailored concentration inequalities.

$$\frac{\mathbb{E}[Z_{\kappa}^2]}{\mathbb{E}[Z_{\kappa}]^2} \lesssim \left[1 - \frac{\tau_2(\kappa)}{\tau}\right]^{-1/2}$$

Sharpness of the transition
$$ightharpoonup \mathbb{P}[Z_{\kappa} \geq 1] = 1 - o(1) \ \ \text{if} \ \ \tau > \tau_2(\kappa)$$

Not tight in general

Refinements of Gaussian Poincaré inequality [Altschuler '23]

 $\mu(\{\mathbf{W}\}) := \frac{1}{d} \sum_{i=1}^{d} \delta_{\lambda_i(\mathbf{W})}$

 $\underline{\mathbf{2^{nd}\ moment:}}\ \mathbb{E}[Z_{\kappa}^2] \iff G(\kappa,q) \coloneqq -\frac{1}{d^2} \log \mathbb{P}[\|\mathbf{W}\|_{\mathrm{op}} \leq \kappa \ \mathrm{and} \ \|q\mathbf{W} + \sqrt{1-q^2}\mathbf{Z}\|_{\mathrm{op}} \leq \kappa]$ $(\mathbf{W}, \mathbf{Z} \sim \text{GOE}(d))$ $q \in [0,1]$ "overlap"

$$\Phi(q, \mu_1, \mu_2) \coloneqq -\frac{1}{d^2} \log \mathbb{P}\left[\mu(\{\mathbf{W}\}) \simeq \mu_1 \text{ and } \mu(\{q\mathbf{W} + \sqrt{1 - q^2}\mathbf{Z}\}) \simeq \mu_2\right]$$

Large deviations of the spectra of **correlated** GOE(d) matrices.

Our proof gives an **upper bound** on $G(\kappa, q)$, using tailored concentration inequalities.

$$\frac{\mathbb{E}[Z_{\kappa}^2]}{\mathbb{E}[Z_{\kappa}]^2} \lesssim \left[1 - \frac{\tau_2(\kappa)}{\tau}\right]^{-1/2} \blacksquare$$

Sharpness of the transition
$$\mathbb{P}[Z_{\kappa} \geq 1] = 1 - o(1)$$
 if $\tau > \tau_2(\kappa)$

Not tight in general

Refinements of Gaussian Poincaré inequality [Altschuler '23]

An **exact characterization** of $\mathbb{E}[Z^2_{\kappa}]$ would require to evaluate $\Phi(q,\mu_1,\mu_2)$

Failure of the second moment method

Failure of the second moment method

- The **second moment method fails at least** in the purple region
- Suggests quenched \neq annealed **at least** in the purple region

More complex than in the Symmetric Binary Perceptron!

Summary: average-case matrix discrepancy

Matrix analog of the SBP

Failure of the second moment method in part of the diagram (≠ Symmetric Binary Perceptron)

Matrix analog of the SBP

Failure of the second moment method in part of the diagram (≠ Symmetric Binary Perceptron)

What's next

Summary: average-case matrix discrepancy

Failure of the second moment method in part of the diagram (≠ Symmetric Binary Perceptron)

What's next

- **Sharp** second moment
- Replica free energy (at least RS level)

Summary: average-case matrix discrepancy

Matrix analog of the SBP

Failure of the second moment method in part of the diagram (≠ Symmetric Binary Perceptron)

What's next

- **Sharp** second moment
- Replica free energy (at least RS level)

- **Structure** of the solution space ? RS/RSB. ...
- (Efficient) algorithms ? [Kunisky & Zhang '23]
- Extensions to non-GOE matrices?

Large deviations of spectra of **structured matrices**

Part II: The HCIZ integral

w. J-C Mourrat (ENS Lyon)

$$\mu(\{\mathbf{W}\}) \coloneqq \frac{1}{d} \sum_{i=1}^{d} \delta_{\lambda_i(\mathbf{W})}$$

$$\mu(\{\mathbf{W}\}) \coloneqq \frac{1}{d} \sum_{i=1}^{d} \delta_{\lambda_i(\mathbf{W})}$$

Large deviations of the spectra of **correlated** GOE(d) matrices [Guionnet '04]

Exact asymptotics of
$$\mathbb{E}[Z_{\kappa}^2]$$
 \longrightarrow $\Phi(q,\mu_1,\mu_2) \coloneqq -\frac{1}{d^2} \log \mathbb{P}\left[\mu(\{\mathbf{W}\}) \simeq \mu_1 \text{ and } \mu(\{q\mathbf{W}+\sqrt{1-q^2}\mathbf{Z}\}) \simeq \mu_2\right]$ $\mathbf{W},\mathbf{Z} \sim \mathrm{GOE}(d)$

 $\mu(\{\mathbf{W}\}) \coloneqq \frac{1}{d} \sum_{i=1}^{d} \delta_{\lambda_i(\mathbf{W})}$

Large deviations of the spectra of **correlated** $\mathrm{GOE}(d)$ matrices [Guionnet '04]

Exact asymptotics of
$$\mathbb{E}[Z^2_{\kappa}]$$

Exact asymptotics of
$$\mathbb{E}[Z_{\kappa}^2]$$
 $\Phi(q,\mu_1,\mu_2) \coloneqq -\frac{1}{d^2} \log \mathbb{P}\left[\mu(\{\mathbf{W}\}) \simeq \mu_1 \text{ and } \mu(\{q\mathbf{W} + \sqrt{1-q^2}\mathbf{Z}\}) \simeq \mu_2\right]$

 $\mathbf{W}, \mathbf{Z} \sim \text{GOE}(d)$

$$\Phi(q, \mu_1, \mu_2) = -\frac{1}{d^2} \log \int d\mathbf{W} d\mathbf{Z} \frac{e^{-\frac{d}{4} \operatorname{Tr}[\mathbf{W}^2 + \mathbf{Z}^2]}}{\mathcal{Z}_d} \mathbb{1} \left[\mu(\{\mathbf{W}\}) \simeq \mu_1 \text{ and } \mu(\{q\mathbf{W} + \sqrt{1 - q^2}\mathbf{Z}\}) \simeq \mu_2 \right]$$

 $\mu(\{\mathbf{W}\}) \coloneqq \frac{1}{d} \sum_{i=1}^{d} \delta_{\lambda_i(\mathbf{W})}$

Large deviations of the spectra of **correlated** GOE(d) matrices [Guionnet '04]

Exact asymptotics of
$$\mathbb{E}[Z_{\kappa}^2]$$

$$\Rightarrow$$

Exact asymptotics of
$$\mathbb{E}[Z_{\kappa}^2]$$
 \longrightarrow $\Phi(q,\mu_1,\mu_2) \coloneqq -\frac{1}{d^2} \log \mathbb{P}\left[\mu(\{\mathbf{W}\}) \simeq \mu_1 \text{ and } \mu(\{q\mathbf{W}+\sqrt{1-q^2}\mathbf{Z}\}) \simeq \mu_2\right]$

$$\mathbf{W}, \mathbf{Z} \sim \text{GOE}(d)$$

$$\Phi(q, \mu_1, \mu_2) = -\frac{1}{d^2} \log \int d\mathbf{W} d\mathbf{Z} \frac{e^{-\frac{d}{4} \text{Tr}[\mathbf{W}^2 + \mathbf{Z}^2]}}{\mathcal{Z}_d} \mathbb{1} \left[\mu(\{\mathbf{W}\}) \simeq \mu_1 \text{ and } \mu(\{q\mathbf{W} + \sqrt{1 - q^2}\mathbf{Z}\}) \simeq \mu_2 \right]$$

$$\mathbf{W}_2 = q\mathbf{W} + \sqrt{1 - q^2}\mathbf{Z}$$

$$\mathbf{W}_2 = q\mathbf{W} + \sqrt{1 - q^2}\mathbf{Z}$$

$$\mathbb{E}[\mathbf{W}_1^2 + \mathbf{W}_2^2] + rac{dq}{2(1-q^2)} \mathbb{T}[\mathbf{W}_1 \mathbf{W}_2] \, \mathbb{1} \left[\mu(\{\mathbf{W}_1\}) \simeq \mu_1 \right] \, \mathbb{1} \left[\mu(\{\mathbf{W}_2\}) \simeq \mu_2 \right] \, \mathbb{1} \left[\mu(\{\mathbf{W}_2\}) \simeq$$

$$= C_d(q) - \frac{1}{d^2} \log \int d\mathbf{W}_1 d\mathbf{W}_2 e^{-\frac{d}{4(1-q^2)} \text{Tr}[\mathbf{W}_1^2 + \mathbf{W}_2^2] + \frac{dq}{2(1-q^2)} \text{Tr}[\mathbf{W}_1 \mathbf{W}_2]} \mathbb{1} \left[\mu(\{\mathbf{W}_1\}) \simeq \mu_1 \right] \mathbb{1} \left[\mu(\{\mathbf{W}_2\}) \simeq \mu_2 \right]$$

 $\mu(\{\mathbf{W}\}) \coloneqq \frac{1}{d} \sum_{i=1}^{d} \delta_{\lambda_i(\mathbf{W})}$

Large deviations of the spectra of **correlated** GOE(d) matrices [Guionnet '04]

Exact asymptotics of
$$\mathbb{E}[Z_{\kappa}^2]$$

$$\qquad \qquad \Longrightarrow \qquad$$

Exact asymptotics of
$$\mathbb{E}[Z_{\kappa}^2]$$
 $\Phi(q,\mu_1,\mu_2) \coloneqq -\frac{1}{d^2} \log \mathbb{P}\left[\mu(\{\mathbf{W}\}) \simeq \mu_1 \text{ and } \mu(\{q\mathbf{W} + \sqrt{1-q^2}\mathbf{Z}\}) \simeq \mu_2\right]$ $\mathbf{W},\mathbf{Z} \sim \mathrm{GOE}(d)$

$$\mathbf{W}, \mathbf{Z} \sim \mathbf{G}$$

$$\Phi(q, \mu_1, \mu_2) = -\frac{1}{d^2} \log \int d\mathbf{W} d\mathbf{Z} \frac{e^{-\frac{d}{4} \text{Tr}[\mathbf{W}^2 + \mathbf{Z}^2]}}{\mathcal{Z}_d} \mathbb{1} \left[\mu(\{\mathbf{W}\}) \simeq \mu_1 \text{ and } \mu(\{q\mathbf{W} + \sqrt{1 - q^2}\mathbf{Z}\}) \simeq \mu_2 \right]$$

$$\mathbf{W}_2 = q\mathbf{W} + \sqrt{1 - q^2}\mathbf{Z}$$

$$\mathbf{W}_2 = q\mathbf{W} + \sqrt{1 - q^2}\mathbf{Z}$$

$$= C_d(q) - \frac{1}{d^2} \log \int d\mathbf{W}_1 d\mathbf{W}_2 e^{-\frac{d}{4(1-q^2)} \text{Tr}[\mathbf{W}_1^2 + \mathbf{W}_2^2] + \frac{dq}{2(1-q^2)} \text{Tr}[\mathbf{W}_1 \mathbf{W}_2]} \mathbb{1} \left[\mu(\{\mathbf{W}_1\}) \simeq \mu_1 \right] \mathbb{1} \left[\mu(\{\mathbf{W}_2\}) \simeq \mu_2 \right]$$

$$\mathbf{W}_a = \mathbf{O}_a \mathbf{\Lambda}_a \mathbf{O}_a^{\top} \quad \mathbf{\Lambda}_a = \mathrm{Diag}(\{\lambda_i^{(a)}\}_{i=1}^d)$$

 $\mu(\{\mathbf{W}\}) \coloneqq \frac{1}{d} \sum_{i=1}^{d} \delta_{\lambda_i(\mathbf{W})}$

Large deviations of the spectra of $\operatorname{\mathbf{correlated}}\ \operatorname{GOE}(d)$ matrices [Guionnet '04]

Exact asymptotics of
$$\mathbb{E}[Z_{\kappa}^2]$$

$$\Rightarrow$$

Exact asymptotics of
$$\mathbb{E}[Z_{\kappa}^2]$$
 $\Phi(q,\mu_1,\mu_2) \coloneqq -\frac{1}{d^2} \log \mathbb{P}\left[\mu(\{\mathbf{W}\}) \simeq \mu_1 \text{ and } \mu(\{q\mathbf{W} + \sqrt{1-q^2}\mathbf{Z}\}) \simeq \mu_2\right]$

$$\Phi(q, \mu_1, \mu_2) = -\frac{1}{d^2} \log \int d\mathbf{W} d\mathbf{Z} \frac{e^{-\frac{d}{4} \text{Tr}[\mathbf{W}^2 + \mathbf{Z}^2]}}{\mathcal{Z}_d} \mathbb{1} \left[\mu(\{\mathbf{W}\}) \simeq \mu_1 \text{ and } \mu(\{q\mathbf{W} + \sqrt{1 - q^2}\mathbf{Z}\}) \simeq \mu_2 \right]$$

$$\mathbf{V}_2 = q\mathbf{W} + \sqrt{1 - q^2}\mathbf{Z}$$

$$= C_d(q) - \frac{1}{d^2} \log \int d\mathbf{W}_1 d\mathbf{W}_2 e^{-\frac{d}{4(1-q^2)} \text{Tr}[\mathbf{W}_1^2 + \mathbf{W}_2^2] + \frac{dq}{2(1-q^2)} \text{Tr}[\mathbf{W}_1 \mathbf{W}_2]} \mathbb{1} \left[\mu(\{\mathbf{W}_1\}) \simeq \mu_1 \right] \mathbb{1} \left[\mu(\{\mathbf{W}_2\}) \simeq \mu_2 \right]$$

$$\mathbf{W}_a = \mathbf{O}_a \mathbf{\Lambda}_a \mathbf{O}_a^{\top} \quad \mathbf{\nabla} \quad \mathbf{\Lambda}_a = \operatorname{Diag}(\{\lambda_i^{(a)}\}_{i=1}^d)$$

$$= \widetilde{C}_d(q) - \frac{1}{d^2} \log \int \prod_{i=1}^d \mathrm{d}\lambda_i^{(1)} \, \mathrm{d}\lambda_i^{(2)} \, e^{-\frac{d}{4(1-q^2)} \mathrm{Tr}[\boldsymbol{\Lambda}_1^2 + \boldsymbol{\Lambda}_2^2]} \mathbb{1} \left[\mu(\{\boldsymbol{\Lambda}_1\}) \simeq \mu_1 \right] \mathbb{1} \left[\mu(\{\boldsymbol{\Lambda}_2\}) \simeq \mu_2 \right] \prod_{i=1}^d |\lambda_i^{(1)} - \lambda_j^{(1)}| \, |\lambda_i^{(2)} - \lambda_j^{(2)}|$$

$$\times \mathbb{E}_{\mathbf{O}_1, \mathbf{O}_2} \left[e^{\frac{dq}{2(1-q^2)}} \mathrm{Tr}[\mathbf{\Lambda}_1 \mathbf{O}_1^\top \mathbf{O}_2 \mathbf{\Lambda}_2 \mathbf{O}_2^\top \mathbf{O}_1] \right] \qquad \qquad \mathbf{O}_1, \mathbf{O}_2 \sim \mathrm{Haar}(\mathcal{O}(d))$$

 $\mu(\{\mathbf{W}\}) := \frac{1}{d} \sum_{i=1}^{d} \delta_{\lambda_i(\mathbf{W})}$

Jacobian of the change of variables

Large deviations of the spectra of $\operatorname{\mathbf{correlated}}\ \operatorname{GOE}(d)$ matrices <code>[Guionnet'04]</code>

Exact asymptotics of
$$\mathbb{E}[Z_{\kappa}^2]$$

Exact asymptotics of
$$\mathbb{E}[Z_{\kappa}^2]$$
 $\Phi(q,\mu_1,\mu_2) \coloneqq -\frac{1}{d^2} \log \mathbb{P}\left[\mu(\{\mathbf{W}\}) \simeq \mu_1 \text{ and } \mu(\{q\mathbf{W} + \sqrt{1-q^2}\mathbf{Z}\}) \simeq \mu_2\right]$

$$\Phi(q, \mu_1, \mu_2) = -\frac{1}{d^2} \log \int d\mathbf{W} d\mathbf{Z} \frac{e^{-\frac{d}{4} \text{Tr}[\mathbf{W}^2 + \mathbf{Z}^2]}}{\mathcal{Z}_d} \mathbb{1} \left[\mu(\{\mathbf{W}\}) \simeq \mu_1 \text{ and } \mu(\{q\mathbf{W} + \sqrt{1 - q^2}\mathbf{Z}\}) \simeq \mu_2 \right]$$

$$\mathbf{W}_2 = q\mathbf{W} + \sqrt{1 - q^2}\mathbf{Z}$$

$$= C_d(q) - \frac{1}{d^2} \log \int d\mathbf{W}_1 d\mathbf{W}_2 e^{-\frac{d}{4(1-q^2)} \text{Tr}[\mathbf{W}_1^2 + \mathbf{W}_2^2] + \frac{dq}{2(1-q^2)} \text{Tr}[\mathbf{W}_1 \mathbf{W}_2]} \mathbb{1} \left[\mu(\{\mathbf{W}_1\}) \simeq \mu_1 \right] \mathbb{1} \left[\mu(\{\mathbf{W}_2\}) \simeq \mu_2 \right]$$

$$\mathbf{W}_a = \mathbf{O}_a \mathbf{\Lambda}_a \mathbf{O}_a^{\top} \quad \mathbf{\nabla} \quad \mathbf{\Lambda}_a = \mathrm{Diag}(\{\lambda_i^{(a)}\}_{i=1}^d)$$

$$= \widetilde{C}_d(q) - \frac{1}{d^2} \log \int \prod_{i=1}^d d\lambda_i^{(1)} d\lambda_i^{(2)} e^{-\frac{d}{4(1-q^2)} \operatorname{Tr}[\mathbf{\Lambda}_1^2 + \mathbf{\Lambda}_2^2]} \mathbb{1} \left[\mu(\{\mathbf{\Lambda}_1\}) \simeq \mu_1 \right] \mathbb{1} \left[\mu(\{\mathbf{\Lambda}_2\}) \simeq \mu_2 \right] \prod_{i < j} |\lambda_i^{(1)} - \lambda_j^{(1)}| |\lambda_i^{(2)} - \lambda_j^{(2)}|$$

 $imes \mathbb{E}_{\mathbf{O}} \left[e^{rac{dq}{2(1-q^2)} \mathrm{Tr} \left[\mathbf{\Lambda}_1 \mathbf{O} \mathbf{\Lambda}_2 \mathbf{O}^{ op}
ight]}
ight]$ Key quantity $\mathbf{O} \sim \mathrm{Haar}(\mathcal{O}(d))$

$$I_{\text{HCIZ}}(\mu_1, \mu_2) \coloneqq \lim_{d \to \infty} \frac{2}{d^2} \log \int_{\mathcal{O}(d)} \mu_{\text{Haar}}(\mathrm{d}O) \, e^{\frac{d}{2} \text{Tr}[OM_1 O^{\mathsf{T}} M_2]}$$

 $\mu(M_a) \to \mu_a$ as $d \to \infty$ $(a \in \{1, 2\})$

Harish-Chandra '57, Itzykson and Zuber '80; Matytsin '94; Guionnet & Zeitouni '02; ...

$$I_{\text{HCIZ}}(\mu_1,\mu_2) \coloneqq \lim_{d \to \infty} \frac{2}{d^2} \log \int_{\mathcal{O}(d)} \mu_{\text{Haar}}(\text{d}O) \, e^{\frac{d}{2} \text{Tr}[OM_1O^\intercal M_2]} \quad \text{Harish-Chandra '57, Itzykson and Zuber '80 ;} \\ \mu(M_a) \to \mu_a \text{ as } d \to \infty \ \, (a \in \{1,2\})$$

A random matrix integral with several motivations and applications...

Large deviations theory

- Multi-matrix models (our example)
- Matrix models with an external field

Guionnet's ICM talk (2022)

$$I_{\text{HCIZ}}(\mu_1,\mu_2) \coloneqq \lim_{d \to \infty} \frac{2}{d^2} \log \int_{\mathcal{O}(d)} \mu_{\text{Haar}}(\text{d}O) \, e^{\frac{d}{2} \text{Tr}[OM_1O^\intercal M_2]} \quad \text{Harish-Chandra '57, Itzykson and Zuber '80 ;} \\ \mu(M_a) \to \mu_a \text{ as } d \to \infty \ \, (a \in \{1,2\})$$

A random matrix integral with several motivations and applications...

- Large deviations theory
 - Multi-matrix models (our example)

Guionnet's ICM talk (2022)

- Matrix models with an external field
- Free energy in Bayesian inference/learning when parameters are large matrices, out of Bayes-optimality
 - Matrix denoising / Matrix sensing with rotationally-invariant priors
 - > Overparametrized and wide two-layers neural networks with quadratic activations

Bun&al '16; M.&al '22; M.&al '24; Semerjian '24; Barbier & al '25; Erba&al'25; ...

$$I_{\text{HCIZ}}(\mu_1,\mu_2) \coloneqq \lim_{d \to \infty} \frac{2}{d^2} \log \int_{\mathcal{O}(d)} \mu_{\text{Haar}}(\text{d}O) \, e^{\frac{d}{2} \text{Tr}[OM_1O^\intercal M_2]} \quad \text{Harish-Chandra '57, Itzykson and Zuber '80 ;} \\ \mu(M_a) \to \mu_a \text{ as } d \to \infty \ \, (a \in \{1,2\})$$

A random matrix integral with several motivations and applications...

- Large deviations theory
 - Multi-matrix models (our example)

Guionnet's ICM talk (2022)

- Matrix models with an external field
- Free energy in Bayesian inference/learning when parameters are large matrices, out of Bayes-optimality
 - Matrix denoising / Matrix sensing with rotationally-invariant priors
 - > Overparametrized and wide two-layers neural networks with quadratic activations

Bun&al '16; M.&al '22; M.&al '24; Semerjian '24; Barbier & al '25; Erba&al'25; ...

Other problems in mathematical physics (quantum gravity, ...) Terry Tao's blog post on the HCIZ integral (2013); McSwiggen '18

$$I_{\text{HCIZ}}(\mu_1,\mu_2) \coloneqq \lim_{d \to \infty} \frac{2}{d^2} \log \int_{\mathcal{O}(d)} \mu_{\text{Haar}}(\text{d}O) \, e^{\frac{d}{2} \text{Tr}[OM_1O^\intercal M_2]} \quad \text{Harish-Chandra '57, Itzykson and Zuber '80 ;} \\ \mu(M_a) \to \mu_a \text{ as } d \to \infty \ \, (a \in \{1,2\})$$

A random matrix integral with several motivations and applications...

- Large deviations theory
 - Multi-matrix models (our example)

Guionnet's ICM talk (2022)

- Matrix models with an external field
- Free energy in Bayesian inference/learning when parameters are large matrices, out of Bayes-optimality
 - Matrix denoising / Matrix sensing with rotationally-invariant priors
 - Overparametrized and wide two-layers neural networks with quadratic activations

Bun&al '16; M.&al '22; M.&al '24; Semerjian '24; Barbier & al '25; Erba&al'25; ...

Other problems in mathematical physics (quantum gravity, ...) Terry Tao's blog post on the HCIZ integral (2013); McSwiggen '18

 $I_{\text{HCIZ}}(\mu_1, \mu_2) := \lim_{d \to \infty} \frac{2}{d^2} \log \int_{\mathcal{O}(d)} \mu_{\text{Haar}}(dO) e^{\frac{d}{2} \text{Tr}[OM_1 O^{\mathsf{T}} M_2]}$

[Matytsin '94; Guionnet & Zeitouni '02]

$$I_{\text{HCIZ}}(\mu, \nu) = F(\mu) + F(\nu) - \frac{1}{2} \inf_{\rho, \nu} \int_{0}^{1} dt \int dx \, \rho(t, x) \Big[v(t, x)^{2} + \frac{\pi^{2}}{3} \rho(t, x)^{2} \Big] \qquad \begin{cases} \partial_{t} \rho + \partial_{x}(\rho v) = 0 \\ \rho(0, \cdot) = \mu \\ \rho(1, \cdot) = \nu \end{cases}$$

$$\partial_t \rho + \partial_x (\rho v) = 0$$

$$\rho(0, \cdot) = \mu$$

$$\rho(1, \cdot) = \nu$$

 $I_{\text{HCIZ}}(\mu_1, \mu_2) \coloneqq \lim_{d \to \infty} \frac{2}{d^2} \log \int_{\mathcal{O}(d)} \mu_{\text{Haar}}(\mathrm{d}O) \, e^{\frac{d}{2} \text{Tr}[OM_1 O^{\mathsf{T}} M_2]}$

[Matytsin '94; Guionnet & Zeitouni '02]

Zeitouni '02]
$$I_{\text{HCIZ}}(\mu,\nu) = F(\mu) + F(\nu) - \frac{1}{2} \inf_{\rho,v} \int_0^1 \mathrm{d}t \int \mathrm{d}x \, \rho(t,x) \Big[v(t,x)^2 + \frac{\pi^2}{3} \rho(t,x)^2 \Big] \qquad \begin{cases} \partial_t \rho + \partial_x (\rho v) = 0 \\ \rho(0,\cdot) = \mu \\ \rho(1,\cdot) = \nu \end{cases}$$

Constraints

$$\partial_t \rho + \partial_x (\rho v) = 0$$

$$\rho(0, \cdot) = \mu$$

$$\rho(1, \cdot) = \nu$$

A unique minimizer (ρ^\star, v^\star) , which satisfies $\partial_t v + v \, \partial_x v = \pi^2 \rho \, \partial_x \rho$

$$\partial_t v + v \, \partial_x v = \pi^2 \rho \, \partial_x \rho \quad \longleftarrow$$

Euler's equations of hydrodynamics, with a **negative** pressure field $P = -\frac{\pi^2}{2}\rho^3$

 $I_{\text{HCIZ}}(\mu_1, \mu_2) \coloneqq \lim_{d \to \infty} \frac{2}{d^2} \log \int_{\mathcal{O}(d)} \mu_{\text{Haar}}(\mathrm{d}O) \, e^{\frac{d}{2} \text{Tr}[OM_1 O^{\mathsf{T}} M_2]}$

[Matytsin '94; Guionnet & Zeitouni '02]

$$I_{\text{HCIZ}}(\mu, \nu) = F(\mu) + F(\nu) - \frac{1}{2} \inf_{\rho, \nu} \int_0^1 dt \int dx \, \rho(t, x) \Big[v(t, x)^2 + \frac{\pi^2}{3} \rho(t, x)^2 \Big] \qquad \begin{cases} \partial_t \rho + \partial_x (\rho v) = 0 \\ \rho(0, \cdot) = \mu \\ \rho(1, \cdot) = \nu \end{cases}$$

Constraints

$$\partial_t \rho + \partial_x (\rho v) = 0$$

$$\rho(0, \cdot) = \mu$$

$$\rho(1, \cdot) = \nu$$

A unique minimizer (ρ^\star, v^\star) , which satisfies $\partial_t v + v \, \partial_x v = \pi^2 \rho \, \partial_x \rho$

$$\partial_t v + v \,\partial_x v = \pi^2 \rho \,\partial_x \rho$$

Euler's equations of hydrodynamics, with a **negative** pressure field $P=-\frac{\pi^2}{2}\rho^3$

A hard problem for (relatively simple) hydrodynamical PDE solvers

 $I_{\text{HCIZ}}(\mu_1, \mu_2) \coloneqq \lim_{d \to \infty} \frac{2}{d^2} \log \int_{\mathcal{O}(d)} \mu_{\text{Haar}}(\mathrm{d}O) \, e^{\frac{d}{2} \text{Tr}[OM_1 O^{\mathsf{T}} M_2]}$

[Matytsin '94; Guionnet & Zeitouni '02]

$$I_{\text{HCIZ}}(\mu, \nu) = F(\mu) + F(\nu) - \frac{1}{2} \inf_{\rho, \nu} \int_{0}^{1} dt \int dx \, \rho(t, x) \Big[v(t, x)^{2} + \frac{\pi^{2}}{3} \rho(t, x)^{2} \Big] \qquad \begin{cases} \partial_{t} \rho + \partial_{x}(\rho v) = 0 \\ \rho(0, \cdot) = \mu \\ \rho(1, \cdot) = \nu \end{cases}$$

Constraints

$$\partial_t \rho + \partial_x (\rho v) = 0$$

$$\rho(0, \cdot) = \mu$$

$$\rho(1, \cdot) = \nu$$

A unique minimizer (ρ^\star, v^\star) , which satisfies $\partial_t v + v \, \partial_x v = \pi^2 \rho \, \partial_x \rho$

$$\partial_t v + v \,\partial_x v = \pi^2 \rho \,\partial_x \rho$$

A hard problem for (relatively simple) hydrodynamical PDE solvers

Connections to **complex analysis** and **integrable systems**

Particular solutions, but no general numerical approach

[Matytsin '94; Menon '17; Schmidt '18; ...]

 $I_{\text{HCIZ}}(\mu_1, \mu_2) \coloneqq \lim_{d \to \infty} \frac{2}{d^2} \log \int_{\mathcal{O}(d)} \mu_{\text{Haar}}(\mathrm{d}O) \, e^{\frac{d}{2} \text{Tr}[OM_1 O^{\mathsf{T}} M_2]}$

[Matytsin '94; Guionnet & Zeitouni '02]

$$I_{\text{HCIZ}}(\mu, \nu) = F(\mu) + F(\nu) - \frac{1}{2} \inf_{\rho, \nu} \int_0^1 dt \int dx \, \rho(t, x) \Big[v(t, x)^2 + \frac{\pi^2}{3} \rho(t, x)^2 \Big] \qquad \begin{cases} \partial_t \rho + \partial_x (\rho v) = 0 \\ \rho(0, \cdot) = \mu \\ \rho(1, \cdot) = \nu \end{cases}$$

Constraints

A unique minimizer (ρ^\star, v^\star) , which satisfies $\partial_t v + v \, \partial_x v = \pi^2 \rho \, \partial_x \rho$

$$\partial_t v + v \,\partial_x v = \pi^2 \rho \,\partial_x \rho$$

A hard problem for (relatively simple) hydrodynamical PDE solvers

Connections to **complex analysis** and **integrable systems**

Particular solutions, but no general numerical approach

[Matytsin '94; Menon '17; Schmidt '18; ...]

Our approach

Discretize the infimum over trajectories (ρ, v)

Similar to ideas used in optimal transport [Benamou & Brenier '00 '01. ...]

Convex problem in $(\rho, \rho v)$

[Matytsin '94; Guionnet & Zeitouni '02]

$$I_{\text{HCIZ}}(\mu,\nu) = F(\mu) + F(\nu) - \frac{1}{2} \inf_{\rho,v} \int_0^1 \mathrm{d}t \int \mathrm{d}x \, \rho(t,x) \Big[v(t,x)^2 + \frac{\pi^2}{3} \rho(t,x)^2 \Big].$$

$$=: J(\mu,\nu)$$

$$\rho(0,\cdot) = \mu$$

$$\rho(1,\cdot) = \nu$$

$$\partial_t \rho + \partial_x (\rho v) = 0$$

Constraints

$$\rho(0,\cdot) = \mu$$

$$\rho(1,\cdot) = \nu$$

$$\partial_t \rho + \partial_x (\rho v) = 0$$

Convex problem in $(\rho, \rho v)$

[Matytsin '94; Guionnet & Zeitouni '02]

$$I_{\text{HCIZ}}(\mu,\nu) = F(\mu) + F(\nu) - \frac{1}{2} \inf_{\rho,v} \int_0^1 \mathrm{d}t \int \mathrm{d}x \, \rho(t,x) \Big[v(t,x)^2 + \frac{\pi^2}{3} \rho(t,x)^2 \Big].$$

$$=: J(\mu,\nu)$$

$$\rho(0,\cdot) = \mu$$

$$\rho(1,\cdot) = \nu$$

$$\partial_t \rho + \partial_x (\rho v) = 0$$

Constraints

$$\rho(0,\cdot) = \mu$$

$$\rho(1,\cdot) = \nu$$

$$\partial_t \rho + \partial_x (\rho v) = 0$$

Theorem [M. & Mourrat '25] (informal)

$$(\mu,
u)$$
 compactly supported, and with continuous densities $\Longrightarrow J(\mu,
u) = \lim_{N,T o \infty} J_{N,T}(\mu,
u)$

Convex problem in $(\rho, \rho v)$

[Matytsin '94; Guionnet & Zeitouni '02]

$$I_{\text{HCIZ}}(\mu,\nu) = F(\mu) + F(\nu) - \frac{1}{2} \inf_{\rho,v} \int_0^1 \mathrm{d}t \int \mathrm{d}x \, \rho(t,x) \Big[v(t,x)^2 + \frac{\pi^2}{3} \rho(t,x)^2 \Big].$$

$$=: J(\mu,\nu)$$

$$\rho(0,\cdot) = \mu$$

$$\rho(1,\cdot) = \nu$$

$$\partial_t \rho + \partial_x (\rho v) = 0$$

Constraints

$$\rho(0,\cdot) = \mu$$

$$\rho(1,\cdot) = \nu$$

$$\partial_t \rho + \partial_x (\rho v) = 0$$

Theorem [M. & Mourrat '25] (informal)

$$(\mu,
u)$$
 compactly supported, and with continuous densities $\Longrightarrow J(\mu,
u) = \lim_{N,T o \infty} J_{N,T}(\mu,
u)$

$$J_{N,T}(\mu,\nu) = \inf_{\{x_i(t_k)\}} \left[\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{T} \Delta t_k \left(v_i(t_k)^2 + \frac{\pi^2}{3} \underbrace{\frac{1}{N^2 (x_{i+1}(t_k) - x_i(t_k))^2}} \right) dt \right]$$
$$v_i(t_k) := \frac{x_i(t_{k+1}) - x_i(t_k)}{\Delta t_k} \qquad \simeq \rho(x_i(t_k))^2$$

$$\{x_i(0)\}$$
 quantiles of μ $\{x_i(1)\}$ quantiles of ν $x_i(t_k) < x_{i+1}(t_k)$

Convex problem in $(\rho, \rho v)$

[Matytsin '94; Guionnet & Zeitouni '02]

$$I_{\text{HCIZ}}(\mu,\nu) = F(\mu) + F(\nu) - \frac{1}{2} \inf_{\rho,v} \int_0^1 dt \int dx \, \rho(t,x) \Big[v(t,x)^2 + \frac{\pi^2}{3} \rho(t,x)^2 \Big].$$

$$=: J(\mu,\nu)$$

$$\rho(0,\cdot) = \mu$$

$$\rho(1,\cdot) = \nu$$

$$\partial_t \rho + \partial_x(\rho v) = 0$$

Constraints

$$\rho(0,\cdot) = \mu$$

$$\rho(1,\cdot) = \nu$$

$$\partial_t \rho + \partial_x (\rho v) = 0$$

Theorem [M. & Mourrat '25] (informal)

$$(\mu,
u)$$
 compactly supported, and with continuous densities $\Longrightarrow J(\mu,
u) = \lim_{N,T o \infty} J_{N,T}(\mu,
u)$

$$J_{N,T}(\mu,\nu) = \inf_{\{x_i(t_k)\}} \left[\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{T} \Delta t_k \left(v_i(t_k)^2 + \frac{\pi^2}{3} \underbrace{\frac{1}{N^2 (x_{i+1}(t_k) - x_i(t_k))^2}} \right) dt \right]$$
$$v_i(t_k) := \frac{x_i(t_{k+1}) - x_i(t_k)}{\Delta t_k} \qquad \simeq \rho(x_i(t_k))^2$$

$$\{x_i(0)\}$$
 quantiles of μ $\{x_i(1)\}$ quantiles of u $x_i(t_k) < x_{i+1}(t_k)$

- Proof requires careful handling of potential singularities in v(t,x)
- The discretization preserves the convexity of the minimization problem

$$J_{N,T}(\mu,\nu) = \inf_{\{x_i(t_k)\}} \left[\frac{1}{N} \sum_{i=1}^N \sum_{k=1}^T \Delta t_k \left(v_i(t_k)^2 + \frac{\pi^2}{3} \frac{1}{N^2 (x_{i+1}(t_k) - x_i(t_k))^2} \right) dt \right]$$

$$\{x_i(0)\}$$
 quantiles of μ $\{x_i(1)\}$ quantiles of u $x_i(t_k) < x_{i+1}(t_k)$

$$J_{N,T}(\mu,\nu) = \inf_{\{x_i(t_k)\}} \left[\frac{1}{N} \sum_{i=1}^N \sum_{k=1}^T \Delta t_k \left(v_i(t_k)^2 + \frac{\pi^2}{3} \frac{1}{N^2 (x_{i+1}(t_k) - x_i(t_k))^2} \right) dt \right]$$

Linear constraints

lacktriangledown A convex problem but very **ill-conditioned in general** lacktriangledown Naïve 1st order methods struggle for large (N,T) The KKT matrix has condition number $\kappa \sim \Theta(N^2T^2)$

$$J_{N,T}(\mu,\nu) = \inf_{\{x_i(t_k)\}} \left[\frac{1}{N} \sum_{i=1}^N \sum_{k=1}^T \Delta t_k \left(v_i(t_k)^2 + \frac{\pi^2}{3} \frac{1}{N^2 (x_{i+1}(t_k) - x_i(t_k))^2} \right) dt \right]$$

- A convex problem but very ill-conditioned in general \Longrightarrow Naïve 1st order methods struggle for large (N,T)The KKT matrix has condition number $\kappa \sim \Theta(N^2T^2)$
- \bullet We use approximate **second-order methods** with strong **preconditioning** techniques. Using fast approximations of the inverse Hessian of $J_{N,T}$

$$J_{N,T}(\mu,\nu) = \inf_{\{x_i(t_k)\}} \left[\frac{1}{N} \sum_{i=1}^N \sum_{k=1}^T \Delta t_k \left(v_i(t_k)^2 + \frac{\pi^2}{3} \frac{1}{N^2 (x_{i+1}(t_k) - x_i(t_k))^2} \right) dt \right]$$

Linear constraints

- A convex problem but very ill-conditioned in general \longrightarrow Naïve 1st order methods struggle for large (N,T)The KKT matrix has condition number $\kappa \sim \Theta(N^2T^2)$
- \bullet We use approximate **second-order methods** with strong **preconditioning** techniques. Using fast approximations of the inverse Hessian of $J_{N,T}$
- Allows for large-scale computation

 $N,T\sim (10^3,10^4)~{
m is}$ typically solved in $\Theta(1\,{
m min.})$ on a single GPU

First applications (1)...

Benchmark I

$$\mu=
u=\sigma_{
m s.c.}$$
 (semicircle), with variance σ^2 [Bun & al '16]

First applications (1)...

Benchmark I

 $\mu=
u=\sigma_{
m s.c.}$ (semicircle), with variance σ^2 [Bun & al '16]

First applications (1)...

Benchmark I

 $\mu =
u = \sigma_{
m s.c.}$ (semicircle), with variance σ^2 [Bun & al '16]

First applications (2)...

[Matytsin '94; Guionnet-Zeitouni '02; Bun&al'16] $\rho^\star(t) \ \ \text{is the eigenvalue density of the Dyson Brownian motion} \ \ A(t) = M + \sqrt{t}W,$ $\quad \text{constrained to have eigenvalue density ν at time $t=1$}$

First applications (2)...

[Matytsin '94; Guionnet-Zeitouni '02; Bun&al'16]

 $ho^\star(t)$ is the eigenvalue density of the Dyson Brownian motion $A(t)=M+\sqrt{t}W$, constrained to have eigenvalue density u at time t=1 $u \sim \mathrm{GOE}(d)$

Remark: Without any constraints, $ho(t,\cdot)=\mu\boxplus\sigma_{\mathrm{s.c.},\sqrt{t}}$ (free convolution)

Benchmark II

Free convolution $\nu = \mu \boxplus \sigma_{\mathrm{s.c.}}$

 $\mu(\mathbf{M}) \sim \mu$

First applications (2)...

[Matytsin '94; Guionnet-Zeitouni '02; Bun&al'16]

 $ho^\star(t)$ is the eigenvalue density of the Dyson Brownian motion $A(t) = M + \sqrt{t}W$, constrained to have eigenvalue density u at time t=1 $\underbrace{W \sim \mathrm{GOE}(d)}_{W}$

Remark: Without any constraints, $\rho(t,\cdot)=\mu\boxplus\sigma_{\mathrm{s.c.},\sqrt{t}}$ (free convolution)

Benchmark II

Free convolution $\nu = \mu \boxplus \sigma_{\mathrm{s.c.}}$

These 2 benchmarks are the **only known analytical solutions** to Matytsin's equations!

(to the best of my knowledge)

 $\mu(\mathbf{M}) \sim \mu$

First applications (3)...

Our solver can be applied to arbitrary (μ, ν) , for which **no analytical solution exists.**

First applications (3)...

Our solver can be applied to arbitrary (μ, ν) , for which **no analytical solution exists.**

Conclusion

A provably correct general-purpose solver to compute $I_{\mathrm{HCIZ}}(\mu, \nu)$ for arbitrary (μ, ν)

Conclusion

A provably correct general-purpose solver to compute $I_{\mathrm{HCIZ}}(\mu, \nu)$ for arbitrary (μ, ν)

What's next

Other numerical solvers?

PDE solvers, integrable systems, augmented Lagrangian methods, ...

- Applications in disordered systems and statistical learning
 - Sharp phase diagram in random matrix discrepancy
 - High-rank and mismatched (non Bayes-optimal) matrix denoising
 - Overparametrized two-layers neural networks with quadratic activations
- ... Other applications (large deviations theory) ?

Conclusion

A provably correct general-purpose solver to compute $I_{\mathrm{HCIZ}}(\mu,
u)$ for arbitrary $(\mu,
u)$

What's next

Other numerical solvers ?

PDE solvers, integrable systems, augmented Lagrangian methods, ...

- ☐ Applications in disordered systems and statistical learning
 - Sharp phase diagram in random matrix discrepancy
 - > High-rank and mismatched (non Bayes-optimal) matrix denoising
 - Overparametrized two-layers neural networks with quadratic activations
- □ ... Other applications (large deviations theory) ?

Needs to solve variational problems:

$$\sup_{\mu} \left[G(\mu) + I_{\text{HCIZ}}(\mu, \nu) \right]$$

e.g. all μ such that $\operatorname{supp}(\mu) \subseteq [-\kappa, \kappa]$ in random matrix discrepancy

Generalize our approach to optimize as well over the boundary densities

Conclusion

A provably correct general-purpose solver to compute $I_{\mathrm{HCIZ}}(\mu, \nu)$ for arbitrary (μ, ν)

What's next

Other numerical solvers ?

PDE solvers, integrable systems, augmented Lagrangian methods, ...

- ☐ Applications in disordered systems and statistical learning
 - Sharp phase diagram in random matrix discrepancy
 - > High-rank and mismatched (non Bayes-optimal) matrix denoising
 - Overparametrized two-layers neural networks with quadratic activations
- ☐ ... Other applications (large deviations theory)?

Needs to solve variational problems:

$$\sup_{\mu} \left[G(\mu) + I_{\text{HCIZ}}(\mu, \nu) \right]$$

e.g. all μ such that $\operatorname{supp}(\mu) \subseteq [-\kappa, \kappa]$ in random matrix discrepancy

Generalize our approach to optimize as well over the boundary densities

THANK YOU!