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“Balancing vectors”: Given                               , find                                 to make the “balancing”                  small    

Discrepancy

General discrepancy problem

Applications & motivations: Combinatorics, perceptron-type problems, computational geometry, 
experimental design, randomized clinical trials, theory of approximation algorithms, …

Discrepancy theory

For large                 , and some assumptions on               , can we compute/upper bound                               
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Matrix discrepancy

Matrix setting of the general discrepancy problem

Matrix discrepancy

Applications and connections to matrix concentration inequalities, quantum 
random access codes, graph sparsification, …

Hopkins&al ’22; Bansal&al ’23; Batson&al ’14; Cai&al ‘25…

• Special case: Vector discrepancy with  

• Many open questions, e.g. Proven for vector discrepancy by 
J. Spencer in 1985

Zouzias ’12; Meka’14 ; Bandeira&al 
’23 ; Bansal&al ’23 ; ...

“Matrix Spencer” conjecture
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Given                                                  , can we find                      such that            

Matrix analog of…

Aubin&al ’19 ; Abbe&al ’22 ; Gamarnik&al ’22 ; … 
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➢ Sharp satisfiability transitions (in the regime                     ) ?

Goals

This talk

Average-case matrix discrepancy

What about random matrices ? 

Given                                                  , can we find                      such that            
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[Kunisky & Zhang ’23 ; Wengiel ‘24]
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First moment computation: large deviations

➢ Idea: The event                        is driven by

➢ Compute                                 from Tricomi’s theorem

Ben Arous & Guionnet ’97; 
Dean&Majumdar ’06 ’08; 

Tricomi’ 85; Dean&Majumdar ’06 ’08; Vivo&al ’07, …
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Left (           ) large deviations of   

Large deviations of the spectral density
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Large deviations of the spectra of correlated                  matrices.

• 1st moment:

• 2nd moment:

“overlap”

➢ Our proof gives an upper bound on               , using tailored concentration inequalities.

➢ An exact characterization of              would require to  evaluate  
Challenging problem

more on that later

Not tight in general 

Sharpness of the transition

Refinements of Gaussian Poincaré inequality [Altschuler ’23]

if
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➢ The second moment method fails at least in the purple region

➢ Suggests quenched     annealed at least in the purple region

More complex than in the Symmetric 
Binary Perceptron ! 

(And possibly in a 
much larger region)
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Summary: average-case matrix discrepancy

Failure of the second moment method in part of the 
diagram (     Symmetric Binary Perceptron)

RS/RSB, …

❑ Sharp second moment

❑ Replica free energy (at least RS level)

➢ Structure of the solution space ?

➢ (Efficient) algorithms ? 

➢ Extensions to non-GOE matrices ? 

What’s next 

9

Matrix analog of the SBP

Large deviations of spectra of structured matrices

[Kunisky & Zhang ’23]
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[Guionnet ’04]Large deviations of the spectra of correlated                  matrices

Key quantity

Jacobian of the change of variables

Exact asymptotics of
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… to the HCIZ integral

Harish-Chandra ’57, Itzykson and Zuber ’80 ; 
Matytsin ‘94 ; Guionnet & Zeitouni ’02 ; …

Given arbitrary               , how to numerically evaluate 

❖ Large deviations theory

❖ Free energy in Bayesian inference/learning when parameters are large matrices, out of Bayes-optimality
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Matytsin’s solution

Constraints
[Matytsin ‘94 ; Guionnet & Zeitouni ’02]

➢ A unique minimizer              , which satisfies Euler’s equations of hydrodynamics, with 

a negative pressure field

12

Connections to complex analysis and integrable systems

Our approach Discretize the infimum over trajectories  

Particular solutions, but no general numerical approach

A hard problem for (relatively simple) 
hydrodynamical PDE solvers

[Matytsin ’94; Menon ’17; Schmidt ’18; …]

Similar to ideas used in optimal transport 
[Benamou & Brenier ‘00 ’01, …]



Discretization, and large-scale minimization
Constraints

[Matytsin ‘94 ; Guionnet & Zeitouni ’02]

Convex problem in

13



Discretization, and large-scale minimization

compactly supported, and with continuous densities

Theorem [M. & Mourrat ‘25]  (informal) 

Constraints
[Matytsin ‘94 ; Guionnet & Zeitouni ’02]

Convex problem in

13



Discretization, and large-scale minimization

compactly supported, and with continuous densities

Theorem [M. & Mourrat ‘25]  (informal) 

quantiles of

quantiles of

Constraints
[Matytsin ‘94 ; Guionnet & Zeitouni ’02]

Linear constraints

Convex problem in

13



Discretization, and large-scale minimization

compactly supported, and with continuous densities

Theorem [M. & Mourrat ‘25]  (informal) 

quantiles of

quantiles of

Constraints
[Matytsin ‘94 ; Guionnet & Zeitouni ’02]

Linear constraints

➢ Proof requires careful handling of potential singularities in

➢ The discretization preserves the convexity of the minimization problem

Convex problem in

13
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A word on the numerical scheme

quantiles of

quantiles of

Linear constraints

❖ A convex problem but very ill-conditioned in general             Naïve 1st order methods struggle for large

❖ We use approximate second-order methods with strong preconditioning techniques.

❖ Allows for large-scale computation

Using fast approximations of the inverse Hessian of 

is typically solved in                     on a single GPU

14

The KKT matrix has condition number 
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First applications (2)…

Free convolution                          

Benchmark II

These 2 benchmarks are the only known 
analytical solutions to Matytsin’s equations !

16

is the eigenvalue density of the Dyson Brownian motion                                    ,

constrained to have eigenvalue density     at time  

[Matytsin ‘94; Guionnet-Zeitouni ‘02; Bun&al’16]

Remark: Without any constraints,                                         (free convolution)  

(to the best of my knowledge)
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