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Stochastic localization  iEdan2013

Fix a measure 11 on R"

Construct a measure-valued process (,ut)tzo as follows:

Exponential tilts: Forany y € R™ define the measure

1 2
dr) — (y,z)=tllzl*/2,(q
:ut,y( Zlf) Z(t,y)e ILL( x)
Mean vector: m(t,y) = /xut,y(dx)

Evolution of the tilting field: dy; = m(t,y,)dt +dB;, yo=0.

Let Ly = ey, and my = m(t, yt)



Stochastic localization  iEdan2013

Properties:

1. (,ut)tzo and (mt)tzo are martingales In particular = Epy

1
2. Vi >0 ‘ECOV(/Lt) j z]

3. Consequence of 1 and 2:

Powerful technique in High-dimensional Probability/Geometry
Stochastic analysis, KLS, functional inequalities, mixing times, ...

Related to the Polchinski flow [Bauerschmidt, Bodineau, Dagallier 2023]
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Information-theoretic characterization a montanari2021]

1. Sample xg ~ u
2. Let gt — tﬂjo —|— Bt

3. Look at Ht = Law(wo ‘ (ys)sgt)

_ d d
Lemma:  (y,)s<t = (Ys)s<t and (pt)t>0 = SL process

[Classical; see Liptser, Shiryavev 1974]

2 4, BTH2 d
Consequence: Wo(Law (yr /T) , M) < = _ o

Equivalent to score-based diffusion sampling  [Montanari 2023]

Rapidly growing theory in ML [Chen et al. 2022, Koehler et al. 22...]



A sampling algorithm
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Sampling via stochastic localization (SL)

For ¢=0,1,2,---
1. Given atilt vector Yy compute the mean vector

Filye) = mye) = / 2 1, (dz)

2. Update the field

11d

Yotr1 = Yo + m(yr) 0 + wy V6 (we)e>0 ~ N(0, 1)

Then output gy /(Lé) for L=T/5 6—0, T —



Mean-field spin glass measures

The Sherrington-Kirkpatrick model:

u(x):%exp{% Zgijxiwj}, r e {—1,

1<J

Mixed p-spin model:

_ el (p) .®p
:LL(‘/E) — Eexp{z n(P—1)/2 <G y L >}

p
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The phase diagram, spherical

The pure spherical p-spin, p large:

By = (6/2)\/10gp_1 Bqg =~ e Be =~ /logp

[Barra, Burioni, Mézard 96]  [Crisanti, Horner, Sommers 93] [Crisanti, Sommers 92]
[Ben Arous, Jagannath 21] [Chen 13]
Replica symmetr —neplica symmetry
P y Y breaking

B [Ben Arous, Jagannath 21]
Thm: Shattering forall S > 85 ~ 2.21 [EA, Montanari, Sellke 2023, EA 24]



The phase diagram, Ising

The pure Ising p-spin, p large:

: : : >
Bat =7 Ba~+/(2logp)/p B~ +/2log2
[Montanari, Ricci-Tersenghi 03] [Talagrand 00]
[Ferrari, Leuzzi, Parisi, Rizzo 12]
. Replica symmetry
Replica symmetry

breaking



The phase diagram, Ising

The pure Ising p-spin, p large:

Ba+ =7 Ba~/(2logp)/p  Bc~ /2log?2

[Montanari, Ricci-Tersenghi 03] [Talagrand 00]
[Ferrari, Leuzzi, Parisi, Rizzo 12]
Replica symmetry ——Replicasymmetry mmetr
breaking

[Gamarnik, Jagannath, Kizildag 23]
Thm: Shattering forall 5 > \/(2logp)/p [EA 24]




The phase diagram, Ising

The pure Ising p-spin, p large:

Ba+ =7 Ba~/(2logp)/p  Bc~ /2log?2

[Montanari, Ricci-Tersenghi 03] [Talagrand 00]
[Ferrari, Leuzzi, Parisi, Rizzo 12]
Replica symmetry ——Replicasymmetry mmetr
breaking

Thm: Shattering or RSB implies hardness of sampling by “stable” algorithms.
[EA, Montanari, Sellke 2023]



Rapid mixing of Glauber dynamics

1
SK: forall g < 1/4 p-spin: forall 5 <
VPP log p
Poincaré inequality:  Implying mixing in ., < C'n?
[Eldan-Koehler-Zeitouni 2020] [Adhikari, Brennecke, Xu, Yau 2022]

(Modified) log-Sobolev inequality: Implying mixing in tmix < Cnlogn

[Chen, Eldan 2022] [Anari, Jain, Koehler, Pham, Vuong 2023]

Very recently MLSI for SK: 5 < 0.295---  [Anari, Koehler, Vuong 2024]



Theorems

SK model:

Theorem: Wasserstein sampling guarantee forall 5 < 1
[EA, Montanari, Sellke 22, Celentano 23]
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Theorems

Ising p-spin:
1
Theorem: Wasserstein sampling guarantee for 3 < 3, (p) — :
[EA, Montanari, Sellke 23] P/ 10g D
e
B < 3 log p Ba+ Bq =< +/(logp)/p B. < +/2log 2
(MLSI) (Shattering) (RSB)

Spherical p-spin:

Theorem: Total variation sampling guarantee for 3 < (5,(p) < e/2
[Huang, Montanari, Pham 24]

Ba+ ~ 1/+/logp Ba ~ e Be = +/logp

(MLSD (Shattering) (RSB)



Sampling from SK using SL
n = 500, 8 =0.5
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Functional inequalities and fast mixing
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Proving PI/LSI using SL

Idea: Localizing the measure induces regularization

PI/LSI for localized measure + approximate variance/entropy conservation

implies PI/LSI for the original measure.

Proving PI/LSI for the localized measure relies on problem-specific
methods.

Proving approximate conservation of variance/entropy relies on bounding
the operator norm of the covariance matrix.
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Poincare inequalities

We want to show: var,(f) < CEL(f, f)

where ELf. f) = Z e

o~o’

(Dirichlet form of Glauber dynamics)

|dea: Track the evolution of each term under SL

Lemma 1: D [5ut (f, f)] < E.(f, f)

Lemma 2:

CE[vary, ()] > ~E[vary, (£)llcov(ru) o)
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Poincare inequalities

If |cov () Hop < af(t) a.s.

then 4:', [Var,ut (f)] 2 6_ f()t Oé(S)dS Varlu(f)

(Approx. variance conservation)

Next, if var,, (f) < C@)Eu, (f, f) as.

(Pl for the localized measure)

then var,(f) < C(?f)fifd5 “)dsg (f, f)

(PI for the original measure)
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Much progress in the recent years

Bauerschmidt-Bodineau 18]
[Eldan, Koehler, Zeitouni 20]

Anari, Jain, Koehler, Pham, Vuong 22,23]
Chen, Eldan 22]
[Bauerschmidt, Bodineau, Dagallier 22,23]

Spin systems (lattice, mean-field, disordered,...)

Most constraining requirement: uniform bound on the covariance matrices

|cov(Ty)|lop < Vv eR"

Precludes applicability to models where the above is simply false!

One example: the Random Field Ising Model



Random Field Ising Model

RFIMonagraph G = (V,E) :

g (o) o< exp ( Z OuOy + Z h au>

(u,v)EE ueV

Notation: ua = RFIMg(6, h)



The (Random Field) Ising Model
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The (Random Field) Ising Model

The phase diagram:

o d=2 Exponential decay of correlation for all 5 whenever o # 0
[Imry, Ma 75; Aizenman, Wehr 89; Chatterjee 18; Aizenman, Harel, Peled 19, 20]

o d>3 Phase transition in (3, 0*)
[Imbrie 85; Bricmont, Kupiainen 88; Ding, Song, Sun 22]
— For 8 < B.(d) andany 0 :
Exp. decay of corr. and order-1 spectral gap

—  For > B.(d) and o very small:

Long range order and very slow mixing

The Griffiths

— For 8> (.(d) and 0 not too small :
Ohase B> Be(d)

There are large islands of small fields (low temp.)

...yet correlations decay exponentially on average.



The Gritfiths phase

Dynamics are expected to slow down, with vanishing spectral gap.
Mixing time is at least super-polylogarithmic.

RFIM (L=100, beta=0.5), fixed +1 boundary, same disorder
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The Gritfiths phase

Persistence of correlations at small scale imply ||cov(u)||op has non-trivial upper tail.

RFIM (L=100, beta=0.5), fixed +1 boundary, same disorder
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(Full) Poincaré inequality

Theorem: If exponential decay of boundary influence on average, even in the
presence of nearby pinnings, then

[EA, Eldan, Gheissari, Piana 24] , , o
(i.e. strong spatial mixing)

VL >klog|V|  sup ;a?}(c;)) exp {L T T°MWY  withprob. 1 —e "
pw\J o

Mixing time is |V|°Y) with high-probability.




(Full) Poincaré inequality

Theorem: If exponential decay of boundary influence on average, even in the
presence of nearby pinnings, then

[EA, Eldan, Gheissari, Piana 24] , , o
(i.e. strong spatial mixing)

VL >rklog|V|  sup ;a’?}(i )) exp {L T T°MWY  withprob. 1 —e "
pn\J o

Mixing time is |V|°Y) with high-probability.

Lemma: SSM holds if o > o¢(d, /3)



Weak Poincare inequality

Theorem: If exponential decay of boundary influence on average then
(i.e. weak spatial mixing)

var, (f) < [VI" E.(f, £)/P osc(f)*/4

[EA, Eldan, Gheissari, Piana 24]

k= k(d,8,0°) >0 l/p+1/g=1 (p alarge constant)




Weak Poincare inequality

Theorem: If exponential decay of boundary influence on average then
(i.e. weak spatial mixing)

var, (f) < [VI" E.(f, £)/P osc(f)*/4

[EA, Eldan, Gheissari, Piana 24]

k= k(d,8,0°) >0 l/p+1/g=1 (p alarge constant)

Implies algebraic relaxation of the dynamics on polynomial time scales:

K

var, (Pef) < 2| oo

and existence of a polynomial time sampling (in TV distance) algorithm.
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At a high-level

® Proving PI/LSI for the localized measure:

1 =RFIMg(B,h) — pe = RFIMg(8, h + y¢)

yr = tog + Vtg

g~ N(0,I)

§ e g0 ~ [

Larger t means variance field variance!

—_—

Show Pl for [+ via coarse-graining the
AT 3 I g Ao lattice + disagreement percolation

= strong Red = weak fields -> low
fields -> SSM temperature
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At a high-level

® Proving PI/LSI for the localized measure:

e Proving approximate conservation of variance/entropy relies on bounding
the operator norm of the covariance matrix.

We prove an exponential upper tail P (||cov(it)]lop > R) < |V] p—CoRt

Implies the weak Pl Varu(f) < |V|* gu(f’ f)l/p osc(f)l/q
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A few open questions

Prove PI/LSI for

1. RFIM under weak spatial mixing

2. SKforall g <1

3. SK with external field

Thanks!



