Sampling, spectral gaps and stochastic localization

AHMED EL ALAOUI

Department of Statistics & Data Sciences, Cornell University

Based on joint works with:

Andrea Montanari, Mark Sellke

Ronen Eldan, Reza Gheissari, Arianna Piana

Cargese, 15 Aout 2025.

Stochastic localization

[Eldan 2013]

Fix a measure μ on \mathbb{R}^n

Construct a measure-valued process $(\mu_t)_{t\geq 0}$ as follows:

Fix a measure μ on \mathbb{R}^n

Construct a measure-valued process $(\mu_t)_{t\geq 0}$ as follows:

Exponential tilts: For any $y \in \mathbb{R}^n$ define the measure

$$\mu_{t,y}(\mathrm{d}x) = \frac{1}{Z(t,y)} e^{\langle y,x\rangle - t||x||^2/2} \mu(\mathrm{d}x)$$

Mean vector: $m(t,y) = \int x \mu_{t,y}(\mathrm{d}x)$

Stochastic localization

[Eldan 2013]

Fix a measure μ on \mathbb{R}^n

Construct a measure-valued process $(\mu_t)_{t\geq 0}$ as follows:

Exponential tilts: For any $y \in \mathbb{R}^n$ define the measure

$$\mu_{t,y}(\mathrm{d}x) = \frac{1}{Z(t,y)} e^{\langle y,x\rangle - t||x||^2/2} \mu(\mathrm{d}x)$$

Mean vector:

$$m(t,y) = \int x \mu_{t,y}(\mathrm{d}x)$$

Evolution of the tilting field:

$$dy_t = m(t, y_t)dt + dB_t, \quad y_0 = 0.$$

Let
$$\mu_t = \mu_{t,y_t}$$
 and $m_t = m(t,y_t)$

Stochastic localization

[Eldan 2013]

Properties:

- 1. $(\mu_t)_{t\geq 0}$ and $(m_t)_{t\geq 0}$ are martingales In particular $\mu=\mathbb{E}\mu_t$
- 2. $\forall t \geq 0$ $\mathbb{E} \operatorname{Cov}(\mu_t) \leq \frac{1}{t}I$
- 3. Consequence of 1 and 2:

$$m_t \xrightarrow[t \to \infty]{\mathrm{d}} m_\infty \sim \mu$$

Powerful technique in High-dimensional Probability/Geometry
Stochastic analysis, KLS, functional inequalities, mixing times, ...
Related to the Polchinski flow [Bauerschmidt, Bodineau, Dagallier 2023]

[EA, Montanari 2021]

- 1. Sample $x_0 \sim \mu$
- 2. Let $\bar{y}_t = tx_0 + B_t$
- 3. Look at $\mu_t = \text{Law}(x_0 | (y_s)_{s \le t})$

- 1. Sample $x_0 \sim \mu$
- 2. Let $\bar{y}_t = tx_0 + B_t$
- 3. Look at $\mu_t = \text{Law}(x_0 \,|\, (y_s)_{s \le t})$

Lemma: $(\bar{y}_s)_{s \le t} \stackrel{d}{=} (y_s)_{s \le t}$

and

 $(\mu_t)_{t\geq 0} \stackrel{\mathrm{d}}{=} \mathrm{SL} \ \mathrm{process}$

[Classical; see Liptser, Shiryavev 1974]

- 1. Sample $x_0 \sim \mu$
- 2. Let $\bar{y}_t = tx_0 + B_t$
- 3. Look at $\mu_t = \text{Law}(x_0 | (y_s)_{s \le t})$

Lemma:
$$(\bar{y}_s)_{s \le t} \stackrel{d}{=} (y_s)_{s \le t}$$

and

$$(\mu_t)_{t\geq 0} \stackrel{\mathrm{d}}{=} \mathrm{SL} \ \mathrm{process}$$

[Classical; see Liptser, Shiryavev 1974]

Consequence:
$$W_2(\text{Law}(y_T/T), \mu)^2 \leq \frac{\mathbb{E}\|B_T\|^2}{T^2} = \frac{d}{T}$$

Information-theoretic characterization

[EA, Montanari 2021]

- 1. Sample $x_0 \sim \mu$
- 2. Let $\bar{y}_t = tx_0 + B_t$
- 3. Look at $\mu_t = \text{Law}(x_0 | (y_s)_{s \le t})$

Lemma:
$$(\bar{y}_s)_{s \le t} \stackrel{d}{=} (y_s)_{s \le t}$$

and

$$(\mu_t)_{t\geq 0} \stackrel{\mathrm{d}}{=} \mathrm{SL} \ \mathrm{process}$$

[Classical; see Liptser, Shiryavev 1974]

Consequence: $W_2(\text{Law}(y_T/T), \mu)^2 \leq \frac{\mathbb{E}\|B_T\|^2}{T^2} = \frac{d}{T}$

Equivalent to score-based diffusion sampling

[Montanari 2023]

Rapidly growing theory in ML

[Chen et al. 2022, Koehler et al. 22...]

A sampling algorithm

Sampling via stochastic localization (SL)

For
$$\ell = 0, 1, 2, \cdots$$

1. Given a tilt vector y_ℓ compute the mean vector

$$\widehat{m}(y_{\ell}) \simeq m(y_{\ell}) = \int x \, \mu_{y_{\ell}}(\mathrm{d}x)$$

Sampling via stochastic localization (SL)

For
$$\ell = 0, 1, 2, \cdots$$

1. Given a tilt vector y_ℓ compute the mean vector

$$\widehat{m}(y_{\ell}) \simeq m(y_{\ell}) = \int x \, \mu_{y_{\ell}}(\mathrm{d}x)$$

2. Update the field

$$y_{\ell+1} = y_{\ell} + \widehat{m}(y_{\ell}) \,\delta + w_{\ell} \,\sqrt{\delta} \qquad (w_{\ell})_{\ell \geq 0} \stackrel{iid}{\sim} N(0, I_n)$$

Sampling via stochastic localization (SL)

For
$$\ell = 0, 1, 2, \cdots$$

1. Given a tilt vector y_ℓ compute the mean vector

$$\widehat{m}(y_{\ell}) \simeq m(y_{\ell}) = \int x \, \mu_{y_{\ell}}(\mathrm{d}x)$$

2. Update the field

$$y_{\ell+1} = y_{\ell} + \widehat{m}(y_{\ell}) \,\delta + w_{\ell} \,\sqrt{\delta} \qquad (w_{\ell})_{\ell \geq 0} \stackrel{iid}{\sim} N(0, I_n)$$

Then output $y_L/(L\delta)$ for $L=T/\delta$ $\delta \to 0, T\to \infty$

Mean-field spin glass measures

The Sherrington-Kirkpatrick model:

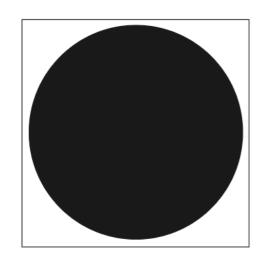
$$\mu(x) = \frac{1}{Z} \exp\left\{\frac{\beta}{\sqrt{n}} \sum_{i < j} g_{ij} x_i x_j\right\}, \quad x \in \{-1, +1\}^n$$

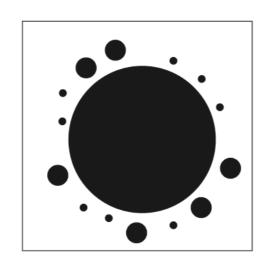
Mixed p-spin model:

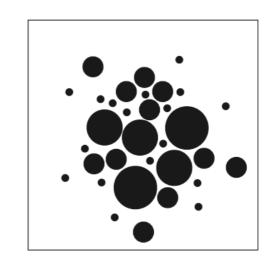
$$\mu(x) = \frac{1}{Z} \exp\left\{ \sum_{p} \frac{\beta \gamma_p}{n^{(p-1)/2}} \langle G^{(p)}, x^{\otimes p} \rangle \right\}$$

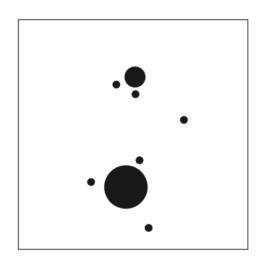
The phase diagram, spherical

The pure **spherical** p-spin, p large:









$$\beta_{d+} \simeq (e/2)\sqrt{\log p}^{-1}$$
 $\beta_d \simeq \sqrt{e}$

$$\beta_d \simeq \sqrt{e}$$

 $\beta_c \simeq \sqrt{\log p}$

[Barra, Burioni, Mézard 96]

[Ben Arous, Jagannath 21]

[Crisanti, Horner, Sommers 93]

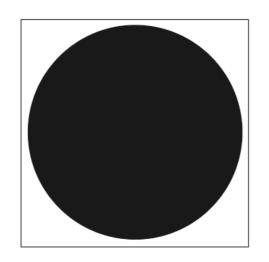
[Crisanti, Sommers 92] [Chen 13]

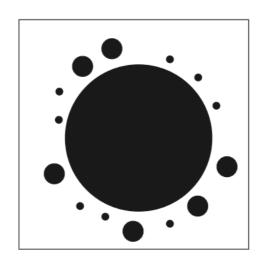
Replica symmetry

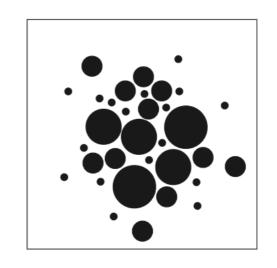
Replica symmetry breaking

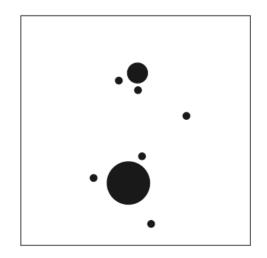
The phase diagram, spherical

The pure **spherical** p-spin, p large:









$$\beta_{d+} \simeq (e/2)\sqrt{\log p}^{-1}$$
 $\beta_d \simeq \sqrt{e}$

$$\beta_d \simeq \sqrt{e}$$

$$\beta_c \simeq \sqrt{\log p}$$

[Barra, Burioni, Mézard 96]

[Ben Arous, Jagannath 21]

[Crisanti, Horner, Sommers 93]

[Crisanti, Sommers 92] [Chen 13]

Replica symmetry

Replica symmetry breaking

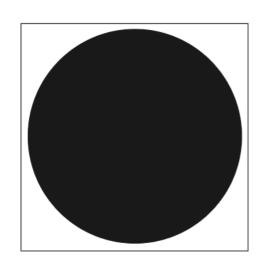
Shattering for all $\beta \geq \bar{\beta}_d \simeq 2.21$ Thm:

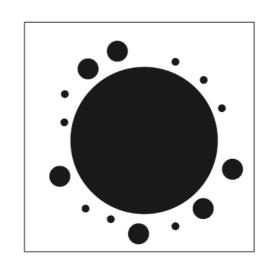
$$\beta \geq \bar{\beta}_d \simeq 2.21$$

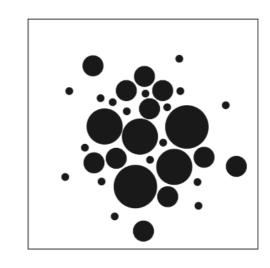
[Ben Arous, Jagannath 21] [EA, Montanari, Sellke 2023, EA 24]

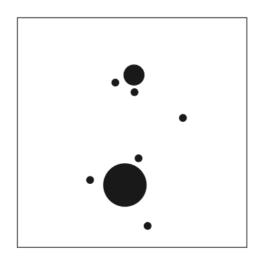
The phase diagram, Ising

The pure **Ising** p-spin, p large:









$$\beta_{d+} \simeq ?$$

$$\beta_d \simeq \sqrt{(2\log p)/p}$$

[Montanari, Ricci-Tersenghi 03] [Ferrari, Leuzzi, Parisi, Rizzo 12]

$$\beta_c \simeq \sqrt{2\log 2}$$

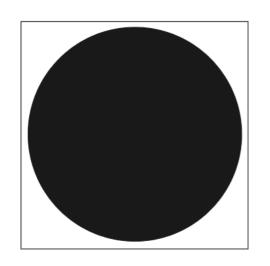
[Talagrand 00]

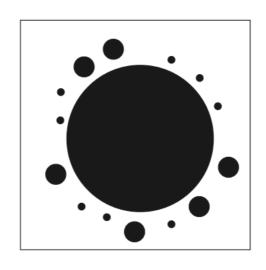
Replica symmetry

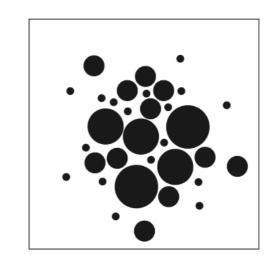
Replica symmetry breaking

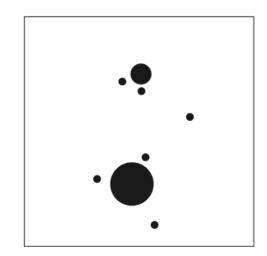
The phase diagram, Ising

The pure **Ising** p-spin, p large:









$$\beta_{d+} \simeq ?$$

$$\beta_d \simeq \sqrt{(2\log p)/p}$$

 $\beta_c \simeq \sqrt{2\log 2}$

[Montanari, Ricci-Tersenghi 03] [Ferrari, Leuzzi, Parisi, Rizzo 12]

[Talagrand 00]

Replica symmetry

Replica symmetry breaking

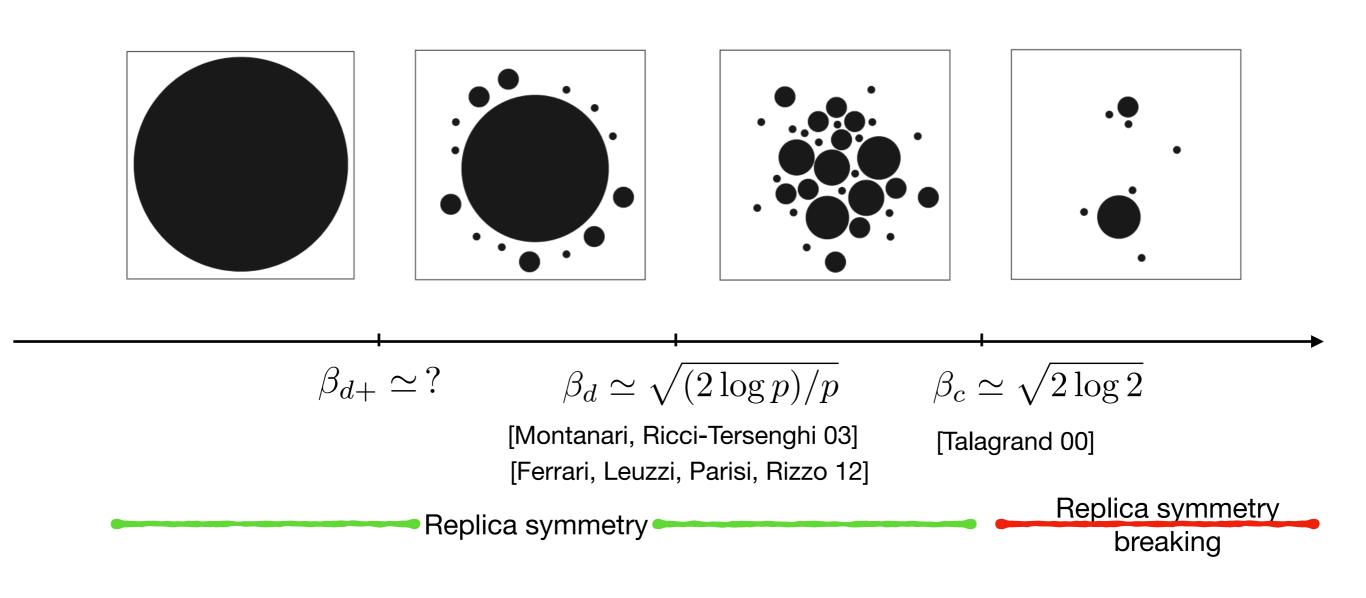
Thm: Shattering for all $\beta > \sqrt{(2\log p)/p}$

[Gamarnik, Jagannath, Kizildag 23]

[EA 24]

The phase diagram, Ising

The pure **Ising** p-spin, p large:



Thm: Shattering *or* RSB implies hardness of sampling by "stable" algorithms.

[EA, Montanari, Sellke 2023]

Rapid mixing of Glauber dynamics

SK: for all
$$\beta < 1/4$$

p-spin: for all
$$\beta < \frac{1}{\sqrt{p^3 \log p}}$$

Poincaré inequality: Implying mixing in $t_{mix} \le Cn^2$

[Eldan-Koehler-Zeitouni 2020] [Adhikari, Brennecke, Xu, Yau 2022]

(Modified) log-Sobolev inequality: Implying mixing in $t_{mix} \le C n \log n$

[Chen, Eldan 2022] [Anari, Jain, Koehler, Pham, Vuong 2023]

Very recently MLSI for SK: $\beta < 0.295 \cdots$ [Anari, Koehler, Vuong 2024]

Theorems

SK model:

Theorem: Wasserstein sampling guarantee for all $\beta < 1$

[EA, Montanari, Sellke 22, Celentano 23]

Theorems

Ising p-spin:

Theorem: Wasserstein sampling guarantee for $\beta < \beta_*(p) \asymp \frac{1}{p\sqrt{\log p}}$

[EA, Montanari, Sellke 23]

$$\beta < \frac{1}{\sqrt{p^3 \log p}} \qquad \beta_{d+} \qquad \qquad \beta_{d} \asymp \sqrt{(\log p)/p} \qquad \qquad \beta_{c} \asymp \sqrt{2 \log 2}$$
 (MLSI) (Shattering) (RSB)

Theorems

Ising p-spin:

Theorem: Wasserstein sampling guarantee for $\beta < \beta_*(p) \asymp \frac{1}{p\sqrt{\log p}}$ [EA, Montanari, Sellke 23]

$$\beta < \frac{1}{\sqrt{p^3 \log p}} \qquad \beta_{d+} \qquad \qquad \beta_{d} \asymp \sqrt{(\log p)/p} \qquad \qquad \beta_{c} \asymp \sqrt{2 \log 2}$$
 (MLSI) (Shattering) (RSB)

Spherical p-spin:

Theorem: Total variation sampling guarantee for $\beta < \beta_*(p) \asymp e/2$

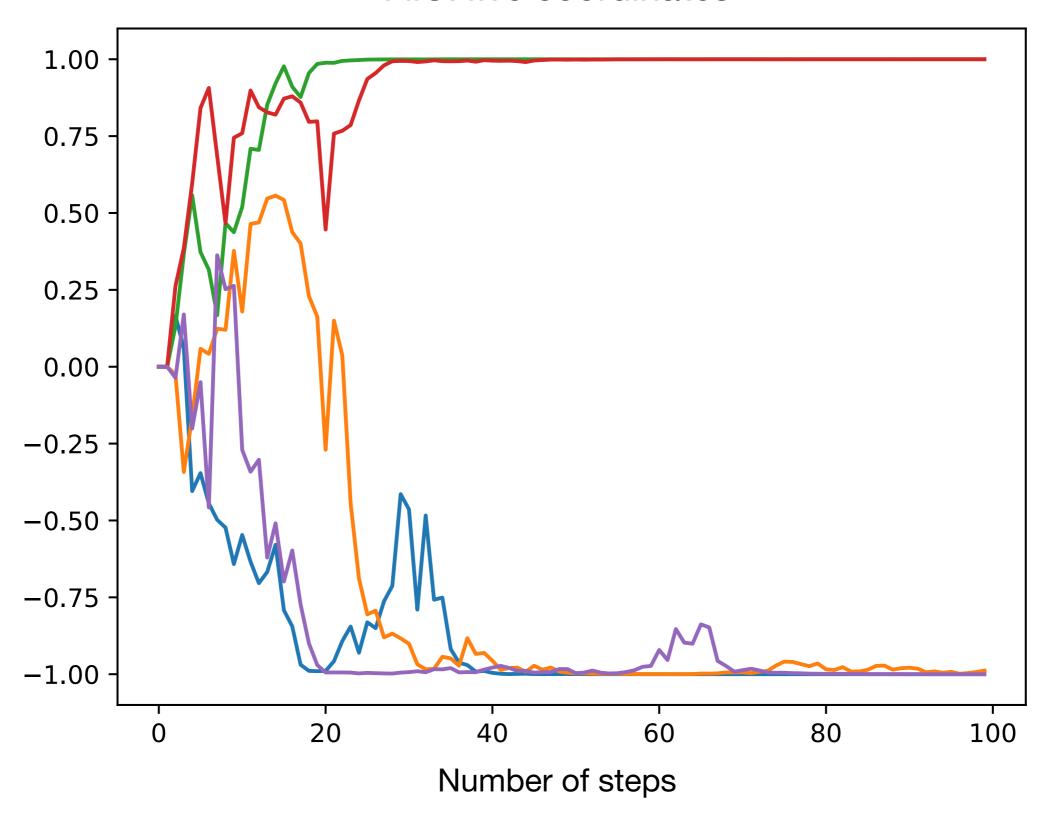
[Huang, Montanari, Pham 24]

$$\beta_{d+} \simeq 1/\sqrt{\log p} \qquad \beta_d \simeq \sqrt{e} \qquad \beta_c \simeq \sqrt{\log p}$$
 (MLSI) (Shattering) (RSB)

Sampling from SK using SL

 $n = 500, \ \beta = 0.5$

First five coordinates



Proving PI/LSI using SL

Idea: Localizing the measure induces regularization

PI/LSI for localized measure + approximate variance/entropy conservation implies PI/LSI for the original measure.

Proving PI/LSI using SL

Idea: Localizing the measure induces regularization

PI/LSI for localized measure + approximate variance/entropy conservation implies PI/LSI for the original measure.

Proving PI/LSI for the localized measure relies on problem-specific methods.

Proving PI/LSI using SL

Idea: Localizing the measure induces regularization

PI/LSI for localized measure + approximate variance/entropy conservation implies PI/LSI for the original measure.

Proving PI/LSI for the localized measure relies on problem-specific methods.

Proving approximate conservation of variance/entropy relies on bounding the operator norm of the covariance matrix.

We want to show:
$$\operatorname{var}_{\mu}(f) \leq C\mathcal{E}_{\mu}(f,f)$$

where
$$\mathcal{E}_{\mu}(f,f) = \sum_{\sigma \sim \sigma'} \frac{\mu(\sigma)\mu(\sigma')}{\mu(\sigma) + \mu(\sigma')} (f(\sigma) - f(\sigma'))^2$$

(Dirichlet form of Glauber dynamics)

We want to show: $\operatorname{var}_{\mu}(f) \leq C\mathcal{E}_{\mu}(f,f)$

where
$$\mathcal{E}_{\mu}(f,f) = \sum_{\sigma \sim \sigma'} \frac{\mu(\sigma)\mu(\sigma')}{\mu(\sigma) + \mu(\sigma')} (f(\sigma) - f(\sigma'))^2$$

(Dirichlet form of Glauber dynamics)

Idea: Track the evolution of each term under SL

Lemma 1:
$$\mathbb{E}\big[\mathcal{E}_{\mu_t}(f,f)\big] \leq \mathcal{E}_{\mu}(f,f)$$

Lemma 2:
$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}\big[\mathrm{var}_{\mu_t}(f)\big] \geq -\mathbb{E}\big[\mathrm{var}_{\mu_t}(f)\|\mathrm{cov}(\mu_t)\|_{\mathrm{op}}\big]$$

If
$$\|\operatorname{cov}(\mu_t)\|_{\operatorname{op}} \le \alpha(t)$$
 a.s.

then
$$\mathbb{E} \big[\mathrm{var}_{\mu_t}(f) \big] \ge e^{-\int_0^t \alpha(s) \mathrm{d}s} \ \mathrm{var}_{\mu}(f)$$

(Approx. variance conservation)

If
$$\|\operatorname{cov}(\mu_t)\|_{\operatorname{op}} \le \alpha(t)$$
 a.s.

then

$$\mathbb{E}\left[\operatorname{var}_{\mu_t}(f)\right] \ge e^{-\int_0^t \alpha(s) ds} \operatorname{var}_{\mu}(f)$$

(Approx. variance conservation)

Next, if

$$\operatorname{var}_{\mu_t}(f) \le C(t)\mathcal{E}_{\mu_t}(f, f)$$
 a.s.

(PI for the localized measure)

then

$$\operatorname{var}_{\mu}(f) \le C(t)e^{\int_0^t \alpha(s)ds} \mathcal{E}_{\mu}(f,f)$$

(PI for the original measure)

Spin systems (lattice, mean-field, disordered,...)

[Bauerschmidt-Bodineau 18]

[Eldan, Koehler, Zeitouni 20]

[Anari, Jain, Koehler, Pham, Vuong 22,23]

[Chen, Eldan 22]

[Bauerschmidt, Bodineau, Dagallier 22,23]

Spin systems (lattice, mean-field, disordered,...)

[Bauerschmidt-Bodineau 18]

[Eldan, Koehler, Zeitouni 20]

[Anari, Jain, Koehler, Pham, Vuong 22,23]

[Chen, Eldan 22]

[Bauerschmidt, Bodineau, Dagallier 22,23]

Most constraining requirement: uniform bound on the covariance matrices

$$\|\operatorname{cov}(T_v\mu)\|_{\operatorname{op}} \le \alpha \quad \forall v \in \mathbb{R}^n$$

Spin systems (lattice, mean-field, disordered,...)

[Bauerschmidt-Bodineau 18]

[Eldan, Koehler, Zeitouni 20]

[Anari, Jain, Koehler, Pham, Vuong 22,23]

[Chen, Eldan 22]

[Bauerschmidt, Bodineau, Dagallier 22,23]

Most constraining requirement: uniform bound on the covariance matrices

$$\|\operatorname{cov}(T_v\mu)\|_{\operatorname{op}} \le \alpha \quad \forall v \in \mathbb{R}^n$$

Precludes applicability to models where the above is simply false!

Spin systems (lattice, mean-field, disordered,...)

[Bauerschmidt-Bodineau 18]

[Eldan, Koehler, Zeitouni 20]

[Anari, Jain, Koehler, Pham, Vuong 22,23]

[Chen, Eldan 22]

[Bauerschmidt, Bodineau, Dagallier 22,23]

Most constraining requirement: uniform bound on the covariance matrices

$$\|\operatorname{cov}(T_v\mu)\|_{\operatorname{op}} \le \alpha \quad \forall v \in \mathbb{R}^n$$

Precludes applicability to models where the above is simply false!

One example: the Random Field Ising Model

Random Field Ising Model

RFIM on a graph G = (V, E):

$$\mu_G(\sigma) \propto \exp\left(\beta \sum_{(u,v)\in E} \sigma_u \sigma_v + \sum_{u\in V} h_u \sigma_u\right) \qquad \beta \geq 0$$

$$h_u \sim N(0, \sigma^2)$$

Notation: $\mu_G = \operatorname{RFIM}_G(\beta, h)$

The phase diagram:

• d=2 Exponential decay of correlation for all β whenever $\sigma \neq 0$ [Imry, Ma 75; Aizenman, Wehr 89; Chatterjee 18; Aizenman, Harel, Peled 19, 20]

The phase diagram:

- d=2 Exponential decay of correlation for all β whenever $\sigma \neq 0$ [Imry, Ma 75; Aizenman, Wehr 89; Chatterjee 18; Aizenman, Harel, Peled 19, 20]
- $d \geq 3$ Phase transition in (β, σ^2) [Imbrie 85; Bricmont, Kupiainen 88; Ding, Song, Sun 22]
 - \longrightarrow For $\beta < \beta_c(d)$ and any σ :

Exp. decay of corr. and order-1 spectral gap

The phase diagram:

- d=2 Exponential decay of correlation for all β whenever $\sigma \neq 0$ [Imry, Ma 75; Aizenman, Wehr 89; Chatterjee 18; Aizenman, Harel, Peled 19, 20]
- $d \geq 3$ Phase transition in (β, σ^2) [Imbrie 85; Bricmont, Kupiainen 88; Ding, Song, Sun 22]
 - \longrightarrow For $\beta < \beta_c(d)$ and any σ :

Exp. decay of corr. and order-1 spectral gap

 \longrightarrow For $\beta>\beta_c(d)$ and σ very small:

Long range order and very slow mixing

The phase diagram:

- d=2 Exponential decay of correlation for all β whenever $\sigma \neq 0$ [Imry, Ma 75; Aizenman, Wehr 89; Chatterjee 18; Aizenman, Harel, Peled 19, 20]
- $d \geq 3$ Phase transition in (β, σ^2) [Imbrie 85; Bricmont, Kupiainen 88; Ding, Song, Sun 22]
 - For $\beta < \beta_c(d)$ and any σ :

 Exp. decay of corr. and order-1 spectral gap
 - For $\beta > \beta_c(d)$ and σ very small : Long range order and very slow mixing
 - \longrightarrow For $\beta > \beta_c(d)$ and σ not too small :

There are large islands of small fields (low temp.)

...yet correlations decay exponentially on average.

The phase diagram:

- d=2 Exponential decay of correlation for all β whenever $\sigma \neq 0$ [Imry, Ma 75; Aizenman, Wehr 89; Chatterjee 18; Aizenman, Harel, Peled 19, 20]
- $d \geq 3$ Phase transition in (β, σ^2) [Imbrie 85; Bricmont, Kupiainen 88; Ding, Song, Sun 22]
 - \longrightarrow For $\beta < \beta_c(d)$ and any σ :

Exp. decay of corr. and order-1 spectral gap

 \longrightarrow For $\beta > \beta_c(d)$ and σ very small:

Long range order and very slow mixing

The Griffiths phase

 \longrightarrow For $\beta>\beta_c(d)$ and σ not too small :

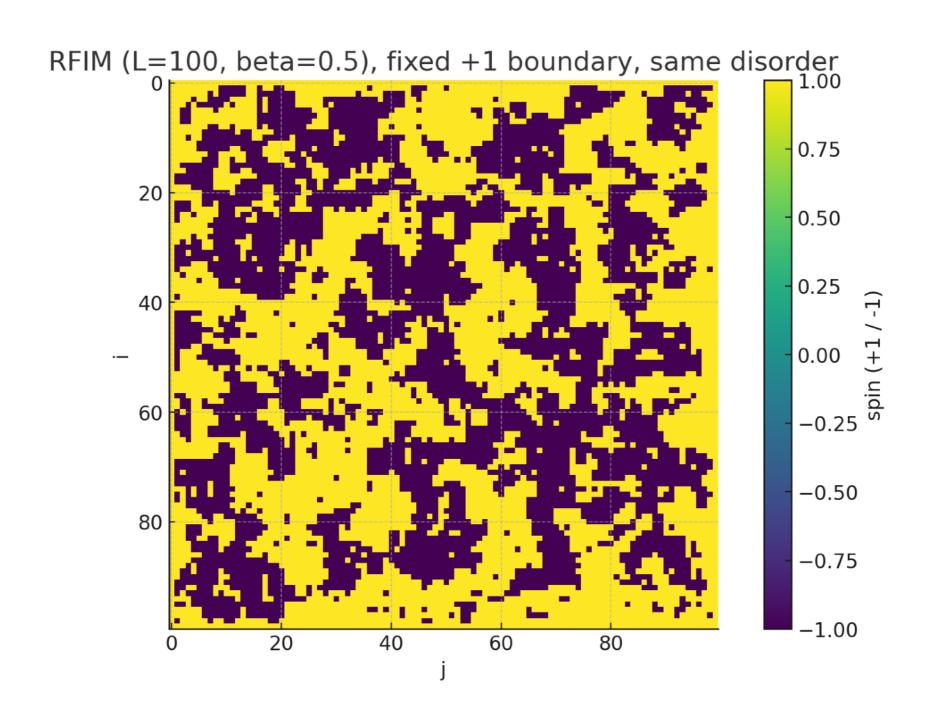
There are large islands of small fields (low temp.)

...yet correlations decay exponentially on average.

The Griffiths phase

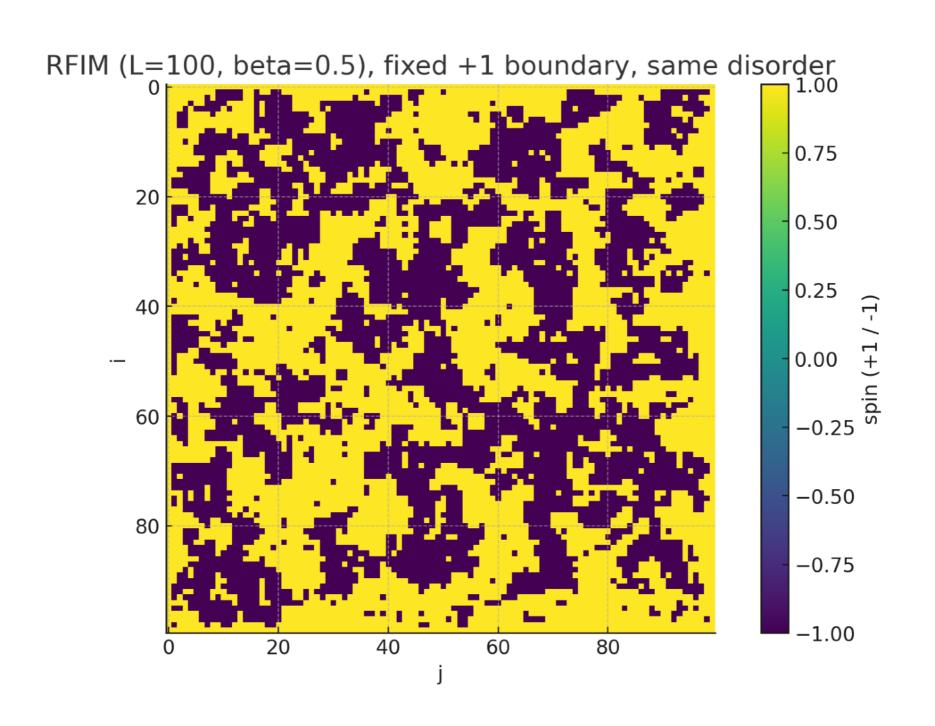
Dynamics are expected to slow down, with vanishing spectral gap.

Mixing time is at least super-polylogarithmic.



The Griffiths phase

Persistence of correlations at small scale imply $\|cov(\mu)\|_{op}$ has non-trivial upper tail.



(Full) Poincaré inequality

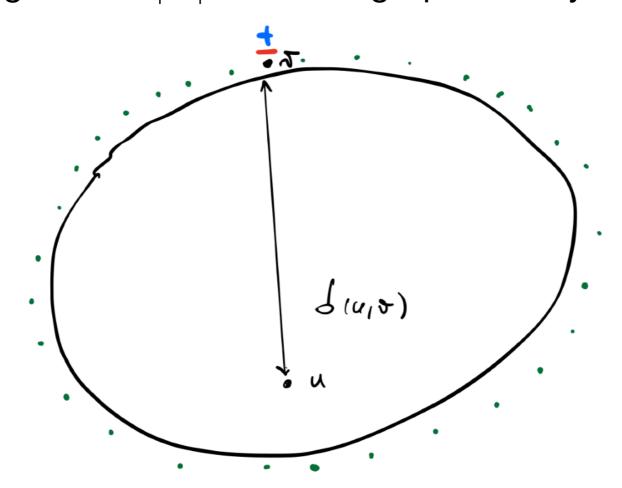
Theorem: If exponential decay of boundary influence on average, even in the presence of nearby pinnings, then

[EA, Eldan, Gheissari, Piana 24]

(i.e. strong spatial mixing)

$$\forall L \ge \kappa \log |V| \qquad \sup_{f} \frac{\mathrm{var}_{\mu}(f)}{\mathcal{E}_{\mu}(f,f)} \le \exp\left\{L^{\frac{d-1}{d}+o(1)}\right\}, \qquad \text{with prob.} \quad 1 - e^{-L}$$

Mixing time is $|V|^{o(1)}$ with high-probability.



(Full) Poincaré inequality

Theorem: If exponential decay of boundary influence on average, even in the presence of nearby pinnings, then

[EA, Eldan, Gheissari, Piana 24]

(i.e. strong spatial mixing)

$$\forall L \ge \kappa \log |V| \qquad \sup_{f} \frac{\operatorname{var}_{\mu}(f)}{\mathcal{E}_{\mu}(f,f)} \le \exp\left\{L^{\frac{d-1}{d}+o(1)}\right\}, \qquad \text{with prob.} \quad 1 - e^{-L}$$

Mixing time is $|V|^{o(1)}$ with high-probability.

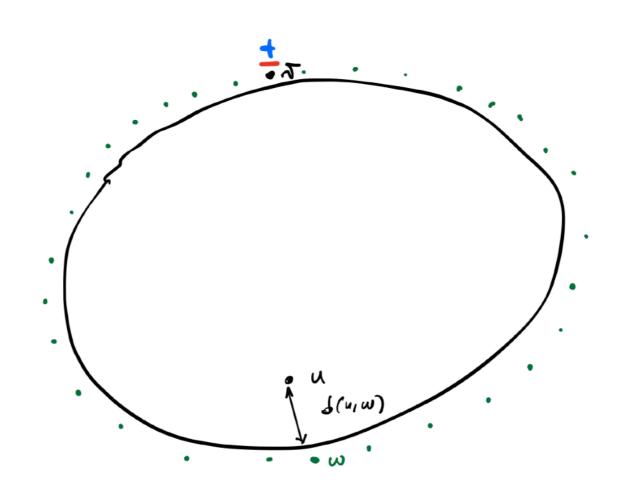
Lemma: SSM holds if $\sigma > \sigma_0(d,\beta)$

Weak Poincaré inequality

Theorem: If exponential decay of boundary influence on average then (i.e. weak spatial mixing)

[EA, Eldan, Gheissari, Piana 24]

$$\operatorname{var}_{\mu}(f) \leq |V|^{\kappa} \mathcal{E}_{\mu}(f, f)^{1/p} \operatorname{osc}(f)^{1/q}$$



Weak Poincaré inequality

Theorem: If exponential decay of boundary influence on average then (i.e. weak spatial mixing)

[EA, Eldan, Gheissari, Piana 24]

$$\operatorname{var}_{\mu}(f) \leq |V|^{\kappa} \mathcal{E}_{\mu}(f, f)^{1/p} \operatorname{osc}(f)^{1/q}$$

$$\kappa = \kappa(d,\beta,\sigma^2) > 0$$
 $1/p + 1/q = 1$ (p a large constant)

Implies algebraic relaxation of the dynamics on polynomial time scales:

$$\operatorname{var}_{\mu}(P_t f) \leq \frac{n^{\kappa}}{t^{\alpha}} ||f||_{\infty}.$$

and existence of a polynomial time sampling (in TV distance) algorithm.

Proving PI/LSI for the localized measure:

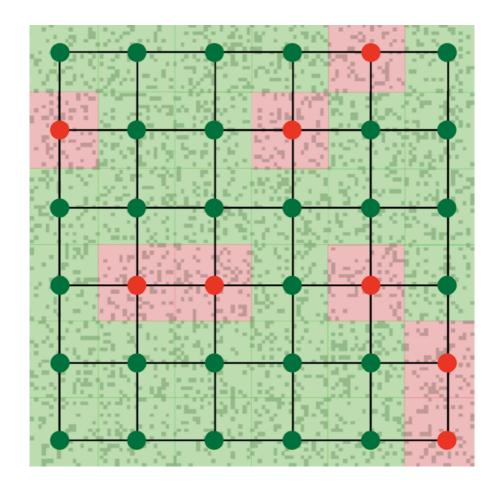
$$\mu = \operatorname{RFIM}_{G}(\beta, h) \implies \mu_{t} = \operatorname{RFIM}_{G}(\beta, h + y_{t})$$

$$y_{t} = t\sigma_{0} + \sqrt{t}g$$

$$\sigma_{0} \sim \mu \quad g \sim N(0, I)$$

Proving PI/LSI for the localized measure:

$$\mu = RFIM_G(\beta, h) \Longrightarrow$$



$$\mu_t = \text{RFIM}_G(\beta, h + y_t)$$

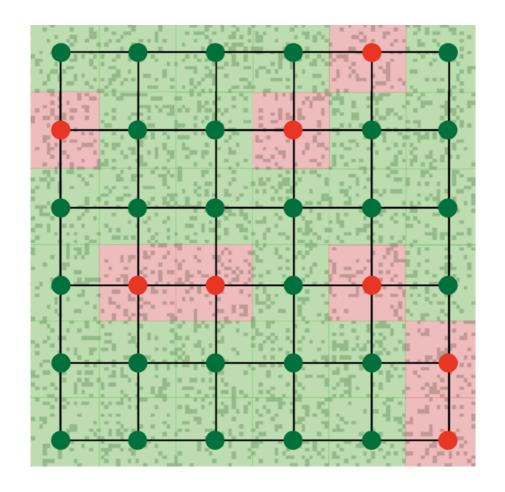
$$y_t = t\sigma_0 + \sqrt{t}g$$

$$\sigma_0 \sim \mu$$
 $g \sim N(0, I)$

Larger t means variance field variance!

Proving PI/LSI for the localized measure:

$$\mu = RFIM_G(\beta, h) \Longrightarrow$$



$$\mu_t = \text{RFIM}_G(\beta, h + y_t)$$

$$y_t = t\sigma_0 + \sqrt{t}g$$

$$\sigma_0 \sim \mu$$
 $g \sim N(0, I)$

Larger t means variance field variance!

Show PI for μ_t via coarse-graining the lattice + disagreement percolation

Green = strong fields -> SSM

Red = weak fields -> low temperature

Proving PI/LSI for the localized measure:

 Proving approximate conservation of variance/entropy relies on bounding the operator norm of the covariance matrix.

We prove an exponential upper tail $\mathbb{P}(\|\text{cov}(\mu_t)\|_{\text{op}} \geq R) \leq |V| e^{-c_0 R}$

Proving PI/LSI for the localized measure:

 Proving approximate conservation of variance/entropy relies on bounding the operator norm of the covariance matrix.

We prove an exponential upper tail $\mathbb{P}(\|\text{cov}(\mu_t)\|_{\text{op}} \geq R) \leq |V| e^{-c_0 R}$

Implies the weak PI

$$\operatorname{var}_{\mu}(f) \leq |V|^{\kappa} \mathcal{E}_{\mu}(f, f)^{1/p} \operatorname{osc}(f)^{1/q}$$

A few open questions

Prove PI/LSI for

- 1. RFIM under weak spatial mixing
- 2. SK for all $\beta < 1$
- 3. SK with external field

A few open questions

Prove PI/LSI for

- 1. RFIM under weak spatial mixing
- 2. SK for all $\beta < 1$
- 3. SK with external field

Thanks!